Cardiovascular Toxicology

, Volume 13, Issue 3, pp 194–207

Cardiovascular Toxicity of Different Sizes Amorphous Silica Nanoparticles in Rats After Intratracheal Instillation

  • Zhongjun Du
  • Dali Zhao
  • Li Jing
  • Guanqun Cui
  • Minghua Jin
  • Yang Li
  • Xiaomei Liu
  • Ying Liu
  • Haiying Du
  • Caixia Guo
  • Xianqing Zhou
  • Zhiwei Sun


The purpose of this work was to investigate the cardiovascular toxicity of different sizes and different dosages of silica nanoparticles in Wistar rats. The three silica nanoparticles (30, 60, and 90 nm) and one fine silica particles (600 nm) at three doses of 2, 5, and 10 (mg/Kg bw) were used in the present experiment. After intratracheal instillation for a total of 16 times, concentration of Si in hearts and serum was measured by inductively coupled plasma optical emission spectrometer. The hematology parameters were analyzed by an automated hematology analyzer, and the inflammatory reaction, oxidative stress, endothelial dysfunction, and the myocardial enzymes in serum were measured by kits. Our results showed intratracheal-instilled silica nanoparticles could pass through the alveolar-capillary barrier into systemic circulation. Concentration of Si in the heart and serum depended on the particles size and dosage. The levels of reactive oxygen species (ROS) at 5, 10 mg/Kg bw of the three silica nanoparticles were higher than the fine silica particles. Blood levels of inflammation-related high-sensitivity C-reactive protein and cytokines such as interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha were increased after exposure to three silica nanoparticles at 10 mg/Kg bw. Moreover, the levels of IL-1β and IL-6 at 10 mg/Kg bw of silica nanoparticles (30 nm) were higher than the fine silica particles. Significant decrease in superoxide dismutase, glutathione peroxidase and significant increase in malondialdehyde were observed at 10 mg/Kg bw of the three silica nanoparticles. A significant decrease in nitric oxide (NO) production was induced which coincided with the reduction of nitric oxide synthase (NOS) activity and the excessive generation of ROS in rats. The levels of intercellular adhesion molecule-l and vascular cell adhesion molecule-l elevated significantly after exposure to three silica nanoparticles at 10 mg/Kg bw, which are considered as early steps of endothelial dysfunction. We conclude that cardiovascular toxicity of silica nanoparticles could be related to the particles size and dosage. Oxidative stress could be involved in inflammatory reaction and endothelial dysfunction, all of which could aggravate cardiovascular toxicology. In addition, endothelial NO/NOS system disorder caused by nanoparticles could be one of the mechanisms for endothelial dysfunction.


Silica nanoparticles Cardiovascular toxicity Inflammatory reaction Oxidative stress Endothelial dysfunction 


  1. 1.
    Nel, A., Xia, T., Madler, L., & Li, Ning. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.PubMedCrossRefGoogle Scholar
  2. 2.
    Oberdörster, G., Oberdorster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.PubMedCrossRefGoogle Scholar
  3. 3.
    Li, Y., Sun, L., Sun, Z. W., Jin, M. H., & Du, Z. J. (2011). Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicology in Vitro, 25(7), 1343–1352.PubMedCrossRefGoogle Scholar
  4. 4.
    LeBlanc, A. J., Cumpston, J. L., Chen, B. T., Frazer, D., Castranova, V., & Nurkiewicz, T. R. (2010). Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. Journal of Toxicology and Environmental Health Part A, 72(24), 1576–1584.CrossRefGoogle Scholar
  5. 5.
    Zhu, M. T., Wang, B., Yuan, L., et al. (2011). Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicology Letters, 203, 162–171.PubMedCrossRefGoogle Scholar
  6. 6.
    Kleinman, M. T., Araujo, J. A., Nel, A., Sioutas, C., Campbell, A., Cong, P. Q., et al. (2008). Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicology Letters, 178, 127–130.PubMedCrossRefGoogle Scholar
  7. 7.
    Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., & Chen, B. T. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicology, 5, 1.CrossRefGoogle Scholar
  8. 8.
    Samet, J. M., Dominici, F. R., & Curriero, F. C. D. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New England Journal of Medicine, 343, 1742–1749.PubMedCrossRefGoogle Scholar
  9. 9.
    Stern, S. T., & McNeil, S. E. (2008). Nanotechnology safety concerns revisited. Toxicological Sciences, 101, 4–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Gauderman, W. J., Avol, E., & Gilliland, F. (2004). The effect of air pollution on lung development from 10 to 18 years of age. New England Journal of Medicine, 351, 1057–1067.PubMedCrossRefGoogle Scholar
  11. 11.
    Ni, Bai., Majid, Khazaei., van Eeden, S. F., & Laher, I. (2007). The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacology & Therapeutics, 113, 16–29.CrossRefGoogle Scholar
  12. 12.
    Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., et al. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42(23), 8959–8964.PubMedCrossRefGoogle Scholar
  13. 13.
    Hamilton, J. M., Salmon, D. P., Galasko, D. R. R., Emond, J., Hansen, L. A., Masliah, E., et al. (2008). Visuospatial deficits predict rate of cognitive decline in autopsy-verified dementia with Lewy bodies. Neuropsychology, 22(6), 729–737.PubMedCrossRefGoogle Scholar
  14. 14.
    Dick, C. A., Singh, P., Daniels, M., Evansky, P., Becker, S., & Gilmour, M. I. (2003). Murine pulmonary inflammatory responses following instillation of size-fractionated ambient particulate matter. Journal of Toxicology and Environmental Health Part A, 66(23), 2193–2207.PubMedCrossRefGoogle Scholar
  15. 15.
    Bai, J., Chiu, W., Wang, J., Tzeng, T., Perrimon, N., & Hsu, J. (2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development, 128(4), 591–601.PubMedGoogle Scholar
  16. 16.
    Sun, Q., Wang, A., Jin, X., Natanzon, A., Duquaine, D., & Brook, R. D. (2005). Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. The Journal of American Medical Association, 294, 3003–3010.CrossRefGoogle Scholar
  17. 17.
    Arts, J. H., Muijser, H., Duistermaat, E., Junker, K., & Kuper, C. F. (2007). Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food and Chemical Toxicology, 45, 1856–1867.PubMedCrossRefGoogle Scholar
  18. 18.
    Park, E. J., & Park, K. (2009). Oxidative stress and pro-inflammatorty responses induced by silica nanoparticles in vivo and in vitro. Toxicology Letters, 184, 18–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, Y., Jiao, F., Qiu, Y., Dong, J. Q., Zhao, Yl., Chen, C. Y., et al. (2009). The effect of Gd @ C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials, 30, 3934–3945.PubMedCrossRefGoogle Scholar
  20. 20.
    Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419.PubMedCrossRefGoogle Scholar
  21. 21.
    Foster, K. A., Yazdanian, M., & Audus, K. L. (2001). Microparticulate uptake mechanisms of in vitro cell culture models of the respiratory epithelium. Journal of Pharmacy and Pharmacology, 53, 57–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., et al. (2002). Extrapulmonary translocation of ultrafine carbon particles following wholebody inhalation exposure of rats. Journal of Toxicology and Environmental Health Part A, 65, 1531–1543.PubMedCrossRefGoogle Scholar
  23. 23.
    Seaton, A., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and acute health effect. Lancet, 345(8943), 176–178.PubMedCrossRefGoogle Scholar
  24. 24.
    Donaldson, K., & Stone, V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell Istituto Superiore di Sanita, 39, 405–410.PubMedGoogle Scholar
  25. 25.
    Schins, P. F., Lightbody, J. H., Borm, P. J. A., Shi, T., Donaldson, K., & Stone, V. (2004). Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicology and Applied Pharmacology, 195, 1–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin, W., Huang, Y. W., Zhou, X. D., & Ma, Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252–259.PubMedCrossRefGoogle Scholar
  27. 27.
    Yuan, X. M., & Li, W. (2008). Iron involvement in multiple signaling pathways of atherosclerosis: A revisited hypothesis. Current Medicinal Chemistry, 15(21), 2157–2172.PubMedCrossRefGoogle Scholar
  28. 28.
    Ramage, L., Proudfoot, L., & Guy, K. (2004). Expression of C-reactive protein in human lung epithelial cells and upregulation by cytokines and carbon particles. Inhalation Toxicology, 16, 607–613.PubMedCrossRefGoogle Scholar
  29. 29.
    Ramage, L., & Guy, K. (2004). Expression of C-reactive protein and heat-shock protein-70 in the lung epithelial cell line A549, in response to PM10 exposure. Inhalation Toxicology, 16, 447–452.PubMedCrossRefGoogle Scholar
  30. 30.
    Fibrinogen Studies Collaboration. (2007). Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: Individual participant meta-analysis of 151, 211 adults in 31 prospective studies. American Journal of Epidemiology, 166, 867–879.CrossRefGoogle Scholar
  31. 31.
    Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindmark, E., Diderholm, E., & Wallentin, L. (2001). Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: Effects of an early invasive or noninvasive strategy. The Journal of American Medical Association, 286, 2107–2113.CrossRefGoogle Scholar
  33. 33.
    Wang, J., Zhou, G., Chen, C., & Yu, H. (2007). Acute toxicity and biodistribution of different sized titanium aioxide particles in mice after oral administration. Toxicology Letters, 168, 176–185.PubMedCrossRefGoogle Scholar
  34. 34.
    Cao, Q., Zhang, S., Dong, C., & Song, W. (2007). Pulmonary responses to fine particles: Different between the spontaneously hypertensive rates and wistar Kyoto rats. Toxicology Letters, 171, 126–137.PubMedCrossRefGoogle Scholar
  35. 35.
    Cho, W. S., Choi, M., Han, B. S., & Jeong, J. (2007). Inflammmatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicology Letters, 175, 24–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Wiseman, D. A., Wells, S. M., Wilham, J., Hubbard, M., Welker, J. E., & Black, S. M. (2006). Endothelial response to stress from exogenous Zn2+ resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression. American Journal of Physiology and Cell Physiology, 291, C555–C568.CrossRefGoogle Scholar
  37. 37.
    Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R., & Kim, Y. M. (2001). Nitric oxide as a bioregulator of apoptosis. Biochemical and Biophysical Research Communications, 282, 1075–1079.PubMedCrossRefGoogle Scholar
  38. 38.
    Hsiai, T. K., Cho, S. K., Reddy, S., Hama, S., Navab, M., Demer, L. L., et al. (2001). Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1770–1776.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang, X. Y., Yin, J. L., & Cheng, K. (2010). Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicology Letters, 198, 237–243.PubMedCrossRefGoogle Scholar
  40. 40.
    Karacalioglu, O., Arslan, Z., & Kilie, S. (2007). Baseline serum levels of cardiac biomarkers in patients with stable coronary artery disease. Biomarkers, 12(5), 533–540.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zhongjun Du
    • 1
  • Dali Zhao
    • 1
  • Li Jing
    • 3
  • Guanqun Cui
    • 2
  • Minghua Jin
    • 1
  • Yang Li
    • 1
  • Xiaomei Liu
    • 1
  • Ying Liu
    • 1
  • Haiying Du
    • 1
  • Caixia Guo
    • 3
  • Xianqing Zhou
    • 3
  • Zhiwei Sun
    • 1
    • 3
  1. 1.Department of Toxicology, School of Public HealthJilin UniversityChangchunPeople’s Republic of China
  2. 2.Respiratory Department, The China-Japan Union HospitalJilin UniversityChangchunPeople’s Republic of China
  3. 3.School of Public Health and Family MedicineCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations