Cardiovascular Toxicology

, Volume 12, Issue 4, pp 285–297 | Cite as

Biological Drugs: Classic Adverse Effects and New Clinical Evidences

  • Paolo Della Pina
  • Enrico Vizzardi
  • Riccardo Raddino
  • Mara Gavazzoni
  • Giorgio Caretta
  • Elio Gorga
  • Livio Dei Cas
Article

Abstract

The last 20 years was characterized by great improvements in the efficacy and tolerability of anticancer therapies. Most of these changes are related to the introduction of targeted drugs, which presents a better activity on the biology of cancer and less toxicity. Nevertheless, the initial enthusiasm was cooled by the emerging evidences of cardiac side effects. The aim of this review is to describe the actual knowledge about the possible cardiotoxicity of targeted drugs. The most important need is the detection of early cardiotoxicity and the evidence of subtle myocardial dysfunction that allows to begin a protective therapy. In our review we analyzed the non invasive imaging techniques to early predict myocardial dysfunction. Echocardiography seems to be the ideal method for her availability, safety and clinical usefulness, in particular the new echocardiographic techniques like speckle tracking.

Keywords

Targeted drugs Myocardial dysfunction Echocardiography 

References

  1. 1.
    Slamon, D., Leyland-Jones, B., Shak, S., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783–792.PubMedCrossRefGoogle Scholar
  2. 2.
    Druker, B. J., Guilhot, F., O’Brien, S. G., et al. (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. New England Journal of Medicine, 355(23), 2408–2417.PubMedCrossRefGoogle Scholar
  3. 3.
    Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanism of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7, 332–344.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, M. H., Kerkela, R., & Force, T. (2008). Mechanism of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118, 84–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Force, T., & Kerkela, R. (2008). Cardiotoxicity of the new cancer therapeutics mechanisms of, and approaches to, the problem. Drug Discovery Today, 13, 778–784.PubMedCrossRefGoogle Scholar
  6. 6.
    Viani, G. A., Afonso, S. L., Stefano, E. J., De Fendi, L. I., & Soares, F. V. (2007). Adjuvant Trastuzumab in the treatment of her-2-positive early breast cancer: A meta-analysis of published randomized trials. BMC Cancer, 7, 153.PubMedCrossRefGoogle Scholar
  7. 7.
    Rayson, D., Richel, D., Chia, S., Jackisch, C., Van, d. V., & Suter, T. (2008). Anthracycline Trastuzumab regimens for HER2/neu-overexpressing breast cancer: Current experience and future strategies. Annals of Oncology, 19, 1530–1539.PubMedCrossRefGoogle Scholar
  8. 8.
    Madarnas, Y., Trudeau, M., Franek, J. A., McCready, D., Pritchard, K. I., & Messersmith, H. (2008). Adjuvant/neoadjuvant trastuzumab therapy in women with HER-2/neu overexpressing breast cancer: A systematic review. Cancer Treatment Reviews, 34, 539–557.PubMedCrossRefGoogle Scholar
  9. 9.
    Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., et al. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. New England Journal of Medicine, 353, 1659–1672.PubMedCrossRefGoogle Scholar
  10. 10.
    Romond, E. H., Perez, E. A., Bryant, J., Suman, V. J., Geyer, C. E., Jr, Davidson, N. E., et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New England Journal of Medicine, 353, 1673–1684.PubMedCrossRefGoogle Scholar
  11. 11.
    Joensuu, H., Kellokumpu-Lehtinen, P. L., Bono, P., Alanko, T., Kataja, V., Asola, R., et al. (2006). Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. New England Journal of Medicine, 354, 809–820.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith, I., Procter, M., Gelber, R. D., Guillaume, S., Feyereislova, A., Dowsett, M., et al. (2007). 2-year follow-up of Trastuzumab after adjuvant chemotherapy in HER2- positive breast cancer: A randomised controlled trial. Lancet, 369, 29–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Seidman, A., Hudis, C., Pierri, M. K., Shak, S., Paton, V., Ashby, M., et al. (2002). Cardiac dysfunction in the Trastuzumab clinical trials experience. Journal of Clinical Oncology, 20, 1215–1221.PubMedCrossRefGoogle Scholar
  14. 14.
    Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56(2), 185–229.PubMedCrossRefGoogle Scholar
  15. 15.
    Shan, K., Lincoff, A. M., & Young, J. B. (1996). Anthracycline-induced cardiotoxicity. Annals of Internal Medicine, 125(1), 47–58.PubMedGoogle Scholar
  16. 16.
    Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339(13), 900–905.PubMedCrossRefGoogle Scholar
  17. 17.
    Sussman, M. A., Hamm-Alvarez, S. F., Vilalta, P. M., Welch, S., & Kedes, L. (1997). Involvement of phosphorylation in doxorubicin-mediated myofibril degeneration. An immunofluorescence microscopy analysis. Circulation Research, 80(1), 52–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., & St Clair, D. K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. The Journal of Clinical Investigation, 98(5), 1253–1260.PubMedCrossRefGoogle Scholar
  19. 19.
    Wojnowski, L., Kulle, B., Schirmer, M., Schlüter, G., Schmidt, A., Rosenberger, A., et al. (2005). NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112(24), 3754–3762.PubMedCrossRefGoogle Scholar
  20. 20.
    Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 288(4), H1925–H1930.PubMedCrossRefGoogle Scholar
  21. 21.
    Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti, E., Schaub, M. C., Wallimann, T., et al. (2005). Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. American Journal of Physiology. Heart and Circulatory Physiology, 289(1), H37–H47.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhu, W., Zou, Y., Aikawa, R., Harada, K., Kudoh, S., Uozumi, H., et al. (1999). MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation, 100(20), 2100–2107.PubMedCrossRefGoogle Scholar
  23. 23.
    Negoro, S., Oh, H., Tone, E., Kunisada, K., Fujio, Y., Walsh, K., et al. (2001). Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation, 103(4), 555–561.PubMedCrossRefGoogle Scholar
  24. 24.
    Lebrecht, D., Setzer, B., Ketelsen, U. P., Haberstroh, J., & Walker, U. A. (2003). Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation, 108(19), 2423–2429.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang, S., Konorev, E. A., Kotamraju, S., Joseph, J., Kalivendi, S., & Kalyanaraman, B. (2004). Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. Intermediacy of H(2)O(2)- and p53-dependent pathways. Journal of Biological Chemistry, 279(24), 25535–25543.PubMedCrossRefGoogle Scholar
  26. 26.
    De Angelis, A., Piegari, E., Cappetta, D., Marino, L., Filippelli, A., Berrino, L., et al. (2010). Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation, 121(2), 276–292.PubMedCrossRefGoogle Scholar
  27. 27.
    Prezioso, L., Tanzi, S., Galaverna, F., Frati, C., Testa, B., Savi, M. et al. (2010). Cancer treatment-induced cardiotoxicity: A cardiac stem cell disease? Cardiovascular & Hematological Agents in Medicinal Chemistry, 8(1), 55–75.Google Scholar
  28. 28.
    Ito, H., Miller, S. C., Billingham, M. E., Akimoto, H., Torti, S. V., Wade, R., et al. (1990). Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 87(11), 4275–4279.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang, Y. X., & Korth, M. (1995). Effects of doxorubicin on excitation-contraction coupling in guinea pig ventricular myocardium. Circulation Research, 76(4), 645–653.PubMedCrossRefGoogle Scholar
  30. 30.
    Arai, M., Yoguchi, A., Takizawa, T., Yokoyama, T., Kanda, T., Kurabayashi, M., et al. (2000). Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca(2+)-ATPase gene transcription. Circulation Research, 86(1), 8–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee, K. F., Simon, H., Chen, H., Bates, B., Hung, M. C., & Hauser, C. (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 378, 394–398.PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer, D., & Birchmeier, C. (1995). Multiple essential functions of neuregulin in development. Nature, 378, 386–390.PubMedCrossRefGoogle Scholar
  33. 33.
    Presta, L. G., Chen, H., O’Connor, S. J., Chisholm, V., Meng, Y. G., Krummen, L., et al. (1997). Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Research, 57(20), 4593–4599.PubMedGoogle Scholar
  34. 34.
    Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T. et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Medicine, 10(2), 145–147 (Epub 2004 Jan 25).Google Scholar
  35. 35.
    Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. New England Journal of Medicine, 357, 2666–2676.PubMedCrossRefGoogle Scholar
  36. 36.
    Scappaticci, F. A., Skillings, J. R., Holden, S. N., Gerber, H. P., Miller, K., Kabbinavar, F., et al. (2007). Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. Journal of the National Cancer Institute, 99, 1232–1239.PubMedCrossRefGoogle Scholar
  37. 37.
    Nalluri, S. R., Chu, D., Keresztes, R., Zhu, X., & Wu, S. (2008). Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis. JAMA, 300, 2277–2285.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu, X., Wu, S., Dahut, W. L., & Parikh, C. R. (2007). Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: Systematic review and meta-analysis. American Journal of Kidney Diseases, 49(2), 186–193.PubMedCrossRefGoogle Scholar
  39. 39.
    Miller, K. D., Chap, L. I., Holmes, F. A., et al. (2005). Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. Journal of Clinical Oncology, 23, 792–799.PubMedCrossRefGoogle Scholar
  40. 40.
    Needle, M. N. (2002). Safety experience with IMC-C225, an anti-epidermal growth factor receptor antibody. Seminars in Oncology, 29(5 suppl 14), 55–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Mendelsohn, J., & Baselga, J. (2006). Epidermal growth factor receptor targeting in cancer. Seminars in Oncology, 33(4), 369–385.PubMedCrossRefGoogle Scholar
  42. 42.
    Cersosimo, R. J. (2003). Monoclonal antibodies in the treatment of cancer, Part 2. American Journal of Health System Pharmacy, 60(16), 1631–1641.PubMedGoogle Scholar
  43. 43.
    Basquiera, A. L., Berretta, A. R., García, J. J., & Palazzo, E. D. (2004). Coronary ischemia related to alemtuzumab therapy. Annals of Oncology, 15(3), 539–540.PubMedCrossRefGoogle Scholar
  44. 44.
    Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12, 908–916.PubMedCrossRefGoogle Scholar
  45. 45.
    Demetri, G. D., van Oosterom, A. T., Garrett, C. R., Blackstein, M. E., Shah, M. H., Verweij, J., et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet, 368(9544), 1329–1338.PubMedCrossRefGoogle Scholar
  46. 46.
    Khakoo, A. Y., Kassiotis, C. M., Tannir, N., et al. (2008). Heart failure associated with sunitinib malate: A multitargeted receptor tyrosine kinase inhibitor. Cancer, 112, 2500–2508.PubMedCrossRefGoogle Scholar
  47. 47.
    Burstein, H. J., Elias, A. D., Rugo, H. S., et al. (2008). Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. Journal of Clinical Oncology, 26, 1810–1816.PubMedCrossRefGoogle Scholar
  48. 48.
    Motzer, R. J., Michaelson, M. D., Redman, B. G., et al. (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24, 16–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Motzer, R. J., Rini, B. I., Bukowski, R. M., et al. (2006). Sunitinib in patients with metastatic renal cell carcinoma. JAMA, 295, 2516–2524.PubMedCrossRefGoogle Scholar
  50. 50.
    Kamba, T., & McDonald, D. M. (2007). Mechanisms of adverse effects of anti- VEGF therapy for cancer. British Journal of Cancer, 96, 1788–1795.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu, S., Chen, J. J., Kudelka, A., Lu, J., & Zhu, X. (2008). Incidence and risk of hypertension with sorafenib in patients with cancer: A systematic review and meta-analysis. The Lancet Oncology, 9(2), 117–123.PubMedCrossRefGoogle Scholar
  52. 52.
    Escudier, B., Eisen, T., Stadler, W. M., et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356, 125–134.PubMedCrossRefGoogle Scholar
  53. 53.
    Wong, M. K., & Jarkowski, A. (2009). Response to sorafenib after sunitinib-induced acute heart failure in a patient with metastatic renal cell carcinoma: Case report and review of the literature. Pharmacotherapy, 29(4), 473–478.PubMedCrossRefGoogle Scholar
  54. 54.
    Moore, M. J., Goldstein, D., Hamm, J., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966.PubMedCrossRefGoogle Scholar
  55. 55.
    Vorinostat (Zolinza). Package insert. Whitehouse Station, NJ: Merck & Co. Inc.Google Scholar
  56. 56.
    Perez, E. A., Koehler, M., Byrne, J., Preston, A. J., Rappold, E., & Ewer, M. S. (2008). Cardiac safety of lapatinib: Pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clinic Proceedings, 83(6), 679–686.PubMedGoogle Scholar
  57. 57.
    Crone, S. A., Zhao, Y. Y., Fan, L., et al. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8, 459–465.PubMedCrossRefGoogle Scholar
  58. 58.
    Ozcelik, C., Erdmann, B., Pilz, B., et al. (2002). Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 99, 8880–8885.PubMedCrossRefGoogle Scholar
  59. 59.
    Kantarjian, H., Jabbour, E., Grimley, J., & Kirkpatrick, P. (2006). Dasatinib. Nature Reviews. Drug Discovery, 5(9), 717–718.PubMedCrossRefGoogle Scholar
  60. 60.
    Yeh, E. T., & Bickford, C. L. (2009). Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. Journal of the American College of Cardiology, 53(24), 2231–2247.PubMedCrossRefGoogle Scholar
  61. 61.
    Kantarjian, H., Giles, F., Wunderle, L., et al. (2006). Nilotinib in imatinibresistant CML and Philadelphia chromosome-positive ALL. New England Journal of Medicine, 354, 2542–2551.PubMedCrossRefGoogle Scholar
  62. 62.
    Kantarjian, H. M., Giles, F., Gattermann, N., et al. (2007). Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood, 110, 3540–3546.PubMedCrossRefGoogle Scholar
  63. 63.
    Le Coutre, P., Ottmann, O. G., Giles, F., et al. (2008). Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood, 111, 1834–1839.PubMedCrossRefGoogle Scholar
  64. 64.
    Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.PubMedCrossRefGoogle Scholar
  65. 65.
    Rajkumar, S. V., Hayman, S., Gertz, M. A., et al. (2002). Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. Journal of Clinical Oncology, 20, 4319–4323.PubMedCrossRefGoogle Scholar
  66. 66.
    Rajkumar, S. V. (2005). Thalidomide therapy and deep venous thrombosis in multiple myeloma. Mayo Clinic Proceedings, 80, 1549–1551.PubMedCrossRefGoogle Scholar
  67. 67.
    Rodeghiero, F., & Elice, F. (2003). Thalidomide and thrombosis. Pathophysiology of Haemostasis and Thrombosis, 33(suppl 1), 15–18.PubMedCrossRefGoogle Scholar
  68. 68.
    Rajkumar, S. V., Gertz, M. A., Lacy, M. Q., et al. (2003). Thalidomide as initial therapy for early-stage myeloma. Leukemia, 17, 775–779.PubMedCrossRefGoogle Scholar
  69. 69.
    Richardson, P. G., Sonneveld, P., Schuster, M. W., et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. New England Journal of Medicine, 352, 2487–2498.PubMedCrossRefGoogle Scholar
  70. 70.
    Moehler, T., & Goldschmidt, H. (2011). Therapy of relapsed and refractory multiple myeloma. Recent Results in Cancer Research, 183, 239–271.PubMedCrossRefGoogle Scholar
  71. 71.
    Voortman, J., & Giaccone, G. (2006). Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: A case report. BMC Cancer, 6, 129.PubMedCrossRefGoogle Scholar
  72. 72.
    Yeh, E. T., Tong, A. T., Lenihan, D. J., et al. (2004). Cardiovascular complications of cancer therapy: Diagnosis, pathogenesis, and management. Circulation, 109, 3122–3131.PubMedCrossRefGoogle Scholar
  73. 73.
    Yeh, E. T. (2006). Cardiotoxicity induced by chemotherapy and antibody therapy. Annual Review of Medicine, 57, 485–498.PubMedCrossRefGoogle Scholar
  74. 74.
    Slordal, L., & Spigset, O. (2006). Heart failure induced by non-cardiac drugs. Drug Safety, 29, 567–586.PubMedCrossRefGoogle Scholar
  75. 75.
    Floyd, J. D., Nguyen, D. T., Lobins, R. L., Bashir, Q., Doll, D. C., & Perry, M. C. (2005). Cardiotoxicity of cancer therapy. Journal of Clinical Oncology, 23, 7685–7696.PubMedCrossRefGoogle Scholar
  76. 76.
    Khakoo, A. Y., Halushka, M. K., Rame, J. E., Rodriguez, E. R., Kasper, E. K., & Judge, D. P. (2005). Reversible cardiomyopathy caused by administration of interferon alpha. Nature Clinical Practice. Cardiovascular Medicine, 2(1), 53–57.PubMedCrossRefGoogle Scholar
  77. 77.
    Braverman, A. C., Antin, J. H., Plappert, M. T., Cook, E. F., & Lee, R. T. (1991). Cyclophosphamide cardiotoxicity in bone marrow transplantation: A prospective evaluation of new dosing regimens. Journal of Clinical Oncology, 9(7), 1215–1223.PubMedGoogle Scholar
  78. 78.
    Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al. (1997). All-trans-retinoic acid in acute promyelocytic leukemia. New England Journal of Medicine, 337(15), 1021–1028.PubMedCrossRefGoogle Scholar
  79. 79.
    Tallman, M. S., Neuberg, D., Bennett, J. M., et al. (2000). Acute megakaryocytic leukemia: The Eastern Cooperative Oncology Group experience. Blood, 96(7), 2405–2411.PubMedGoogle Scholar
  80. 80.
    Frankel, S. R., Eardley, A., Lauwers, G., Weiss, M., & Warrell, R. P., Jr. (1992). The “retinoic acid syndrome” in acute promyelocytic leukemia. Annals of Internal Medicine, 117(4), 292–296.PubMedGoogle Scholar
  81. 81.
    Hutson, T. E., Figlin, R. A., Kuhn, J. G., & Motzer, R. J. (2008). Targeted therapies for metastatic renal cell carcinoma: An overview of toxicity and dosing strategies. Oncologist., 13(10), 1084–1096.PubMedCrossRefGoogle Scholar
  82. 82.
    Lahiri, M. K., Kannankeril, P. J., & Goldberger, J. J. (2008). Assessment of autonomic function in cardiovascular disease: Physiological basis and prognostic implications. Journal of the American College of Cardiology, 51(18), 1725–1733.PubMedCrossRefGoogle Scholar
  83. 83.
    Tjeerdsma, G., Meinardi, M. T., van Der Graaf, W. T., van Den Berg, M. P., Mulder, N. H., Crijns, H. J., et al. (1999). Early detection of anthracycline induced cardiotoxicity in asymptomatic patients with normal left ventricular systolic function: Autonomic versus echocardiographic variables. Heart, 81(4), 419–423.PubMedGoogle Scholar
  84. 84.
    Meinardi, M. T., van der Graaf, W. T., van Veldhuisen, D. J., Gietema, J. A., de Vries, E. G., & Sleijfer, D. T. (1999). Detection of anthracycline-induced cardiotoxicity. Cancer Treatment Reviews, 25(4), 237–247.PubMedCrossRefGoogle Scholar
  85. 85.
    Dolci, A., Dominici, R., Cardinale, D., Sandri, M. T., & Panteghini, M. (2008). Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: Systematic review of the literature and recommendations for use. American Journal of Clinical Pathology, 130(5), 688–695.PubMedCrossRefGoogle Scholar
  86. 86.
    Bryant, J., Picot, J., Baxter, L., Levitt, G., Sullivan, I., & Clegg, A. (2007). Use of cardiac markers to assess the toxic effects of anthracyclines given to children with cancer: A systematic review. European Journal of Cancer, 43(13), 1959–1966.PubMedCrossRefGoogle Scholar
  87. 87.
    Auner, H. W., Tinchon, C., Linkesch, W., et al. (2003). Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Annals of Hematology, 82, 218–222.PubMedGoogle Scholar
  88. 88.
    Newby, L. K., Christenson, R. H., Ohman, E. M., et al. (1998). Value of serial troponin T measures for early and late risk stratification in patients with acute coronary syndromes. Circulation, 98, 1853–1859.PubMedCrossRefGoogle Scholar
  89. 89.
    Cardinale, D., Sandri, M. T., Martinoni, A., et al. (2002). Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Annals of Oncology, 13, 710–715.PubMedCrossRefGoogle Scholar
  90. 90.
    Kilickap, S., Barista, I., Akgul, E., et al. (2005). cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Annals of Oncology, 16, 798–804.PubMedCrossRefGoogle Scholar
  91. 91.
    Cardinale, D., Sandri, M. T., Colombo, A., et al. (2004). Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation, 109, 2749–2754.PubMedCrossRefGoogle Scholar
  92. 92.
    La Vecchia, L., Mezzena, G., Zanolla, L., et al. (2000). Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. Journal of Heart and Lung Transplantation, 19, 644–652.PubMedCrossRefGoogle Scholar
  93. 93.
    Cardinale, D., Lamantia, G., & Cipolla, C. M. (2006). Troponin I and cardiovascular risk stratification in patients with testicular cancer. Journal of Clinical Oncology, 24, 3508–3514.PubMedCrossRefGoogle Scholar
  94. 94.
    Cardinale, C., Colombo, A., Sandri, M. T., et al. (2006). Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation, 114, 2474–2481.PubMedCrossRefGoogle Scholar
  95. 95.
    Maisel, A. S., Krishnaswamy, P., Nowak, R. M., McCord, J., Hollander, J. E., Duc, P., et al. (2002). Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. New England Journal of Medicine, 347, 161–167.PubMedCrossRefGoogle Scholar
  96. 96.
    Mueller, C., Laule-Kilian, K., Scholer, A., Frana, B., Rodriguez, D., Schindler, C., et al. (2004). Use of B-type natriuretic peptide for the management of women with dyspnea. American Journal of Cardiology, 94, 1510–1514.PubMedCrossRefGoogle Scholar
  97. 97.
    Jourdain, P., Jondeau, G., Funck, F., Gueffet, P., Le Helloco, A., Donal, E., et al. (2007). Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: The STARS-BNP multicenter study. Journal of the American College of Cardiology, 49, 1733–1739.PubMedCrossRefGoogle Scholar
  98. 98.
    Nousiainen, T., Jantunen, E., Vanninen, E., et al. (1999). Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment for non-Hodgkin’s lymphoma. European Journal of Haematology, 62, 135–141.PubMedCrossRefGoogle Scholar
  99. 99.
    Meinardi, M. T., Van Veldhuisen, D. J., Gietema, J. A., et al. (2001). Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. Journal of Clinical Oncology, 19, 2746–2753.PubMedGoogle Scholar
  100. 100.
    Chen, S., Garami, M., & Gardner, D. G. (1999). Doxorubicin selectively inhibits brain versus atrial natriuretic peptide gene expression in cultured neonatal rat myocytes. Hypertension, 34, 1223–1231.PubMedCrossRefGoogle Scholar
  101. 101.
    Romano, S., Fratini, S., Ricevuto, E., Procaccini, V., Stifano, G., Mancini, M., et al. (2011). Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. British Journal of Cancer, 105(11), 1663–1668.PubMedCrossRefGoogle Scholar
  102. 102.
    Daugaard, G., Lassen, U., Bie, P., Pedersen, E. B., Jensen, K. T., Abildgaard, U., et al. (2005). Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. European Journal of Heart Failure, 7(1), 87–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Fallah-Rad, N., Walker, J. R., Wassef, A., Lytwyn, M., Bohonis, S., Fang, T., et al. (2011). The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. Journal of the American College of Cardiology, 57(22), 2263–2270.PubMedCrossRefGoogle Scholar
  104. 104.
    Sawaya, H., Sebag, I. A., Plana, J. C., Januzzi, J. L., Ky, B., Cohen, V., et al. (2011). Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. American Journal of Cardiology, 107(9), 1375–1380.PubMedCrossRefGoogle Scholar
  105. 105.
    Bryant, J., Picot, J., Baxter, L., et al. (2007). Use of cardiac markers to assess the toxic effects of anthracyclines given to children with cancer: A systematic review. European Journal of Cancer, 43, 1959–1966.PubMedCrossRefGoogle Scholar
  106. 106.
    Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2005). ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society. Circulation, 112(12), e154–e235 (Epub 2005 Sep 13).Google Scholar
  107. 107.
    Skrypniuk, J. V., Bailey, D., Cosgriff, P. S., Fleming, J. S., Houston, A. S., Jarritt, P. H., et al. (2005). UK audit of left ventricular ejection fraction estimation from equilibrium ECG gated blood pool images. Nuclear Medicine Communications, 26(3), 205–215.PubMedCrossRefGoogle Scholar
  108. 108.
    Hoffmann, R., von Bardeleben, S., ten Cate, F., Borges, A. C., Kasprzak, J., Firschke, C. et al. (2005). Assessment of systolic left ventricular function: A multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. European Heart Journal, 26(6), 607–616 (Epub 2004 Dec 17).Google Scholar
  109. 109.
    Nousiainen, T., Jantunen, E., Vanninen, E., & Hartikainen, J. (2002). Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. British Journal of Cancer, 86(11), 1697–1700.PubMedCrossRefGoogle Scholar
  110. 110.
    Jensen, B. V., Skovsgaard, T., & Nielsen, S. L. (2002). Functional monitoring of anthracycline cardiotoxicity: A prospective, blinded, long-term observational study of outcome in 120 patients. Annals of Oncology, 13(5), 699–709.PubMedCrossRefGoogle Scholar
  111. 111.
    Jenkins, C., Bricknell, K., Chan, J., Hanekom, L., & Marwick, T. H. (2007). Comparison of two- and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. The American Journal of Cardiology, 99(3), 300–306 (Epub 2006 Dec 1).Google Scholar
  112. 112.
    Sugeng, L., Mor-Avi, V., Weinert, L., Niel, J., Ebner, C., Steringer-Mascherbauer, R. et al. (2006). Quantitative assessment of left ventricular size and function: Side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation, 114(7), 654–661 (Epub 2006 Aug 7).Google Scholar
  113. 113.
    Hare, J. L., Brown, J. K., Leano, R., Jenkins, C., Woodward, N., & Marwick, T. H. (2009). Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. American Heart Journal, 158(2), 294–301.PubMedCrossRefGoogle Scholar
  114. 114.
    Marchandise, B., Schroeder, E., Bosly, A., Doyen, C., Weynants, P., Kremer, R., et al. (1989). Early detection of doxorubicin cardiotoxicity: Interest of Doppler echocardiographic analysis of left ventricular filling dynamics. American Heart Journal, 118(1), 92–98.PubMedCrossRefGoogle Scholar
  115. 115.
    Radulescu, D., Pripon, S., Parv, A., Duncea, C., & Ciuleanu, T. E. (2007). Altered left ventricular diastolic performance in oncologic patients treated with epirubicin. Congest Heart Fail, 13(4), 215–220.PubMedCrossRefGoogle Scholar
  116. 116.
    Pudil, R., Horacek, J. M., Strasova, A., Jebavy, L., & Vojacek, J. (2008). Monitoring of the very early changes of left ventricular diastolic function in patients with acute leukemia treated with anthracyclines. Experimental Oncology, 30(2), 160–162.PubMedGoogle Scholar
  117. 117.
    Bountioukos, M., Doorduijn, J. K., Roelandt, J. R., Vourvouri, E. C., Bax, J. J., Schinkel, A. F., et al. (2003). Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. European Journal of Echocardiography, 4(4), 300–305.PubMedCrossRefGoogle Scholar
  118. 118.
    Cottin, Y., L’huillier, I., Casasnovas, O., Geoffroy, C., Caillot, D., Zeller, M., et al. (2000). Dobutamine stress echocardiography identifies anthracycline cardiotoxicity. European Journal of Echocardiography, 1(3), 180–183.PubMedCrossRefGoogle Scholar
  119. 119.
    Hamada, H., Ohkubo, T., Maeda, M., & Ogawa, S. (2006). Evaluation of cardiac reserved function by high-dose dobutamine-stress echocardiography in asymptomatic anthracycline-treated survivors of childhood cancer. Pediatrics International, 48(3), 313–320.PubMedCrossRefGoogle Scholar
  120. 120.
    Jarfelt, M., Kujacic, V., Holmgren, D., Bjarnason, R., & Lannering, B. (2007). Exercise echocardiography reveals subclinical cardiac dysfunction in young adult survivors of childhood acute lymphoblastic leukemia. Pediatric Blood & Cancer, 49(6), 835–840.CrossRefGoogle Scholar
  121. 121.
    Chetboul, V., Escriou, C., Tessier, D., Richard, V., Pouchelon, J. L., Thibault, H., et al. (2004). Tissue Doppler imaging detects early asymptomatic myocardial abnormalities in a dog model of Duchenne’s cardiomyopathy. European Heart Journal, 25(21), 1934–1939.PubMedCrossRefGoogle Scholar
  122. 122.
    Nagueh, S. F., Bachinski, L. L., Meyer, D., Hill, R., Zoghbi, W. A., Tam, J. W., et al. (2001). Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation, 104(2), 128–130.PubMedCrossRefGoogle Scholar
  123. 123.
    Neilan, T. G., Jassal, D. S., Perez-Sanz, T. M., Raher, M. J., Pradhan, A. D., Buys, E. S. et al. (2006). Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. European Heart Journal, 27(15), 1868–1875 (Epub 2006 May 22).Google Scholar
  124. 124.
    Kapusta, L., Groot-Loonen, J., Thijssen, J. M., DeGraaf, R., & Daniëls, O. (2003). Regional cardiac wall motion abnormalities during and shortly after anthracyclines therapy. Medical and Pediatric Oncology, 41(5), 426–435.PubMedCrossRefGoogle Scholar
  125. 125.
    Tassan-Mangina, S., Codorean, D., Metivier, M., Costa, B., Himberlin, C., Jouannaud, C. et al. (2006). Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: Early and late alterations of left ventricular function during a prospective study. European Journal of Echocardiography, 7(2), 141–146 (Epub 2005 Jun 6).Google Scholar
  126. 126.
    Jurcut, R., Wildiers, H., Ganame, J., D’hooge, J., De Backer, J., Denys, H., et al. (2008). Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. Journal of the American Society of Echocardiography, 21(12), 1283–1289.PubMedCrossRefGoogle Scholar
  127. 127.
    Ganame, J., Claus, P., Eyskens, B., Uyttebroeck, A., Renard, M., D’hooge, J. et al. (2007). Acute cardiac functional and morphological changes after Anthracycline infusions in children. The American Journal of Cardiology, 99(7), 974–977 (Epub 2007 Feb 16).Google Scholar
  128. 128.
    Ganame, J., Claus, P., Uyttebroeck, A., Renard, M., D’hooge, J., Bijnens, B. et al. (2007). Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. Journal of the American Society of Echocardiography, 20(12), 1351–1358 (Epub 2007 Jul 2).Google Scholar
  129. 129.
    Erven, K., Jurcut, R., Weltens, C., Giusca, S., Ector, J., Wildiers, H. et al. (2011). Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. International Journal of Radiation Oncology, Biology, Physics, 79(5), 1444–1451 (Epub 2010 Jun 3).Google Scholar
  130. 130.
    van Royen, N., Jaffe, C. C., Krumholz, H. M., Johnson, K. M., Lynch, P. J., Natale, D., et al. (1996). Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. American Journal of Cardiology, 77, 843–850.PubMedCrossRefGoogle Scholar
  131. 131.
    Altena, R., Perik, P. J., van Veldhuisen, D. J., de Vries, E. G., & Gietema, J. A. (2009). Cardiovascular toxicity caused by cancer treatment: Strategies for early detection. The Lancet Oncology, 10, 391–399.PubMedCrossRefGoogle Scholar
  132. 132.
    Schwartz, R. G., McKenzie, W. B., Alexander, J., et al. (1987). Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: Seven-year experiencevusing serial radionuclide angiocardiography. American Journal of Medicine, 82, 1109–1118.PubMedCrossRefGoogle Scholar
  133. 133.
    Ewer, M. S., Ali, M. K., Mackay, B., Wallace, S., Valdivieso, M., Legha, S. S., et al. (1984). A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. Journal of Clinical Oncology, 2, 112–117.PubMedGoogle Scholar
  134. 134.
    Gosselink, A. T., Liem, A. L., Reiffers, S., & Zijlstra, F. (1998). Prognostic value of predischarge radionuclide ventriculography at rest and exercise after acute myocardial infarction treated with thrombolytic therapy or primary coronary angioplasty. The Zwolle Myocardial Infarction Study Group. Clinical Cardiology, 21, 254–260.PubMedCrossRefGoogle Scholar
  135. 135.
    Sisson, J. C., Shapiro, B., Meyers, L., Mallette, S., Mangner, T. J., Wieland, D. M., et al. (1987). Metaiodobenzylguanidine to map scintigraphically the adrenergic system in man. Journal of Nuclear Medicine, 28, 1620–1624.PubMedGoogle Scholar
  136. 136.
    Merlet, P., Valette, H., Dubois-Rande, J. L., et al. (1992). Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. Journal of Nuclear Medicine, 33, 471–477.PubMedGoogle Scholar
  137. 137.
    Nakata, T., Miyamoto, K., Doi, A., et al. (1998). Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. Journal of Nuclear Cardiology, 5, 579–590.PubMedCrossRefGoogle Scholar
  138. 138.
    Wakasugi, S., Fischman, A. J., Babich, J. W., et al. (1993). Metaiodobenzylguanidine: Evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. Journal of Nuclear Medicine, 34, 1283–1286.PubMedGoogle Scholar
  139. 139.
    Behr, T. M., Behe, M., & Wormann, B. (2001). Trastuzumab and breast cancer. New England Journal of Medicine, 345, 995–996.PubMedCrossRefGoogle Scholar
  140. 140.
    Perik, P. J., Lub-de Hooge, M. N., Gietema, J. A., et al. (2006). Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2- positive metastatic breast cancer. Journal of Clinical Oncology, 24, 2276–2282.PubMedCrossRefGoogle Scholar
  141. 141.
    De Korte, M. A., de Vries, E. G., Lub-de Hooge, M. N., et al. (2007). 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: A clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. European Journal of Cancer, 43, 2046–2051.PubMedCrossRefGoogle Scholar
  142. 142.
    Fallah-Rad, N., Lytwyn, M., Fang, T., Kirkpatrick, I., & Jassal, D. S. (2008). Delayed contrast enhancement cardiac magnetic resonance imaging in traztuzumab induced cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 10, 5.PubMedCrossRefGoogle Scholar
  143. 143.
    Tham, E. B., Chow, K., Spavor, M., Pagano, J. J., Haykowsky, M., & Thompson, R. (2011). Degree of diffuse fibrosis measured by cardiac MRI correlates with LV remodeling in childhood cancer survivors after anthracycline chemotherapy [abstract]. Journal of Cardiovascular Magnetic Resonance, 13, P276.CrossRefGoogle Scholar
  144. 144.
    Dash, R., Chung, J., Chan, T., Yamada, M., Barral, J., Nishimura, D., et al. (2011). A molecular MRI probe to detect treatment of cardiac apoptosis in vivo. Magnetic Resonance in Medicine, 66, 1152–1162.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paolo Della Pina
    • 1
  • Enrico Vizzardi
    • 1
  • Riccardo Raddino
    • 1
  • Mara Gavazzoni
    • 1
  • Giorgio Caretta
    • 1
  • Elio Gorga
    • 1
  • Livio Dei Cas
    • 1
  1. 1.Department of Experimental and Applied MedicineUniversity of BresciaBresciaItaly

Personalised recommendations