Advertisement

Cardiovascular Toxicology

, Volume 12, Issue 2, pp 158–165 | Cite as

Grape Seed and Skin Extract Protects Against Acute Chemotherapy Toxicity induced by Doxorubicin in Rat Heart

  • Meherzia MokniEmail author
  • Sonia Hamlaoui-Guesmi
  • Mohamed Amri
  • Lamjed Marzouki
  • Ferid Limam
  • Ezzedine Aouani
Article

Abstract

Doxorubicin (Dox), an antitumor anthracycline antibiotic, plays a key role in the treatment of many neoplastic diseases. However, its chronic administration induces cardiomyopathy. Increased oxidative stress is a major factor implicated in Dox-induced cardiotoxicity. We hypothesized that a pre-treatment with grape seed and skin extract (GSE), commonly used as an antioxidant agent, may alleviate this cardiotoxicity. Rats were treated with GSE (500 mg/kg bw) by intraperitoneal injection during 8 days. On the 4th day, rats were administered a single dose of Dox (20 mg/kg). At the end of the treatment, their hearts were Langendorff-perfused, subjected to ischemia/reperfusion (I/R) injury, and left ventricular functions as heart rate and developed pressure measured. Hearts were also used to determine free iron, H2O2, Ca2+, lipoperoxidation, carbonylation and antioxidant enzymes such as superoxide dismutase (SOD), catalase and peroxidase. Doxorubicin drastically affected heart activity as evidenced after I/R experiments. This effect was associated with an increase in heart free iron and a decrease in Ca2+ concentrations. This effect may have contributed to oxidative stress as assessed by high lipoperoxidation and carbonylation level. GSE counteracted Dox-induced disturbances of hemodynamic parameters, alleviated oxidative stress as assessed by normalized iron and Ca2+ levels and increased SOD activity especially the Mn isoform.

Keywords

Dox GSE Heart activity Ca2+ levels SOD CAT POD 

Notes

Acknowledgments

We gratefully acknowledge the financial support of the Tunisian Ministry of High Education, Scientific Research and Technology.

References

  1. 1.
    Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.PubMedCrossRefGoogle Scholar
  2. 2.
    Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S., & Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research, 24, 2783–2840.PubMedGoogle Scholar
  3. 3.
    Alkreathy, H., Damanhouri, Z. A., Ahmed, N., Slevin, M., Ali, S. S., & Osman, A. M. M. (2010). Aged garlic protectes against doxorubicin-induced cardiotoxicity in rats. Food and Chemical Toxicology, 48, 951–956.PubMedCrossRefGoogle Scholar
  4. 4.
    Arai, K., Maguchi, S., Fujii, S., Ishibashi, H., Oikawa, K., & Taniguchi, N. (1987). Glycation and inactivation of human Cu, Zn-superoxide dismutase. Identification of the in vitro glycation sites. Journal of Biological Chemistry, 262, 16969–16972.PubMedGoogle Scholar
  5. 5.
    Buzdar, A. U., Marcus, C., Smith, T. L., & Blumenschein, G. R. (1985). Early and delayed clinical cardiotoxicity of doxorubicin. Cancer, 55(12), 2761–2765.PubMedCrossRefGoogle Scholar
  6. 6.
    Chance, B., & Maehly, A. C. (1995). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764–817.CrossRefGoogle Scholar
  7. 7.
    Charradi, K., Sebai, H., Elkahoui, S., Ben Hassine, F., Limam, F., & Aouani, E. (2011). Grape seed extract alleviates high-fat diet-induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovascular Toxicology, 11(1), 28–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Csar, X. F., Wilson, N. J., Strike, P., Sparrow, L., McMahon, K. A., Ward, A. C., et al. (2001). Copper/Zinc superoxide dismutase is phosphorylated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics, 1, 435–443.PubMedCrossRefGoogle Scholar
  9. 9.
    Doroshow, J. H., Locker, G. Y., & Myers, C. E. (1980). Enzymatic defences of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. Journal of Clinical Investigation, 65, 128–135.PubMedCrossRefGoogle Scholar
  10. 10.
    Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, 186, 421–431.PubMedCrossRefGoogle Scholar
  11. 11.
    Hasinoff, B. B., Hellmann, K., Herman, E. H., & Ferrans, V. J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Current Medicinal Chemistry, 5, 1–28.PubMedGoogle Scholar
  12. 12.
    Herskko, C., Link, G., Tzahor, M., Kaltwasser, J. P., Athias, P., Grynberg, A., et al. (1993). Anthracycline toxicity is potentiated by iron and inhibited by deferoxamine: studies in rat heart cells in culture. The Journal of Laboratory and Clinical Medicine, 122, 245–251.Google Scholar
  13. 13.
    Ishii, K., Tamaoka, A., Takeda, T., Ishii, K., Iwasaki, N., & Shoji, S. (2006). Clinical and neurological features of organoarsenic compound (diphenylarsenic acid) intoxication in Kamisu. Japan Rinsho Shinkeigaku, 46(11), 768. Japanese.Google Scholar
  14. 14.
    Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.PubMedCrossRefGoogle Scholar
  15. 15.
    Jensen, R. A. (1986). Doxorubicin cardiotoxicity: contractile changes after long-term treatment in the rat. The Journal of Pharmacology and Experimental Therapeutics, 236, 197–203.PubMedGoogle Scholar
  16. 16.
    Juan, M. E., Vinardell, M. P., & Planas, J. M. (2002). The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. Journal of Nutrition, 132, 257–260.PubMedGoogle Scholar
  17. 17.
    Kalivendi, S. V., Konorev, E. A., Cunnigham, S., Vanamala, S. K., Kaji, E. H., Joseph, J., et al. (2005). Doxorubicin activates nuclear factor of activated T. lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochemical Journal, 389, 527–539.PubMedCrossRefGoogle Scholar
  18. 18.
    Kalivendi, S. V., Kotamraju, S., Zhao, H., Joseph, J., & Klayavataman, B. (2001). Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Journal of Biological Chemistry, 276, 47266–47276.PubMedCrossRefGoogle Scholar
  19. 19.
    Khan, M. F., Wu, X., Tifnis, U. R., Ansari, G. A. S., & Boor, P. J. (2002). Protein adducts of malondialdehyde and 4-hydroxynonemal in livers of iron loaded rats. Quantitation and Localization Toxicology, 173, 193–201.Google Scholar
  20. 20.
    Khanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin content of grape seed and pomace and total anthocyanin content of grape pomace as affected by extrusion processing. Journal of Food Science, 74, H174–H182.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, D. H., Landry, A. B., Lee, Y. S., & Katz, A. M. (1989). Doxorubicin-induced calcium release from cardiac sarcoplasmic reticulum vesicles. Journal of Molecular and Cellular Cardiology, 21, 433–436.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, D. S., Kim, H. R., Woo, E. R., et al. (2005). Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular singal-regulated kinase. Biochemical Pharmacology, 70(7), 1066–1078.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim, S. Y., Kim, S. J., Kim, B. J., Rah, S. Y., Chung, S. M., Im, M. J., et al. (2006). Doxorubicin induced reactive oxygen species generation and intracellular Ca++ increase are reciprocally modulated in rat cardiomyocytes. Experimental & Molecular Medicine, 38(5), 535–545.Google Scholar
  24. 24.
    Leardi, A., Caraglia, M., Selleri, C., Pepe, S., Pizzi, C., Notaro, R., et al. (1998). Desferioxamine increases iron depletion and apoptosis induced by ara-C of human myeloid leukaemic cells. British Journal of Haematology, 102(3), 746–752.PubMedCrossRefGoogle Scholar
  25. 25.
    Lebrecht, D., Kirschner, J., Geist, A., Haberstrah, J., & Walker, U. A. (2009). Respiratory chain deficiency precedes the disrupted calcium homeostasis in chronic doxorubicin cardio myopathy. Cardiovascular Pathology, 19(5), e167–e174.PubMedCrossRefGoogle Scholar
  26. 26.
    Leonard, S. S., Xia, C., Jiang, B. H., Stinefelt, B., Klandorf, H., Harris, G. K., et al. (2003). Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochemical and Biophysical Research Communications, 309, 1017–1026.PubMedCrossRefGoogle Scholar
  27. 27.
    Levine, R. L., Garland, D., Olever, C. N., Amici, A., et al. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 467–478.CrossRefGoogle Scholar
  28. 28.
    Li, X. L., Li, B. Y., Gao, H. Q., Cheng, M., Xu, L., Li, X. H., et al. (2009). Proteomics approach to study the mechanism of action of grape seed proanthocyanidin extracts on arterial remodelling in diabetic rats. International Journal of Molecular Medicine, 25, 237–248.Google Scholar
  29. 29.
    Loukili, A., Khelidj, A., & Richard, P. (1999). Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete. Cement and Concrete Research, 29, 577–584.CrossRefGoogle Scholar
  30. 30.
    Misra, H. P., & Fridovich, I. (1972). The generation of superoxide radical during the autoxidation of ferredoxins. Journal of Biological Chemistry, 246(22), 6886–6890.Google Scholar
  31. 31.
    Mokni, M., Limam, F., Elkahoui, S., Amri, M., & Aouani, E. (2007). Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Archives of Biochemistry and Biophysics, 457, 1–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Olson, H. M., Young, D. M., Pieur, D. J., Lery, A. L., & Reagan, A. L. (1974). Electrolyte and morphologic alterations of myocardium in adriamycin treated rabbits. The American Journal of Pathology, 77, 439–454.PubMedGoogle Scholar
  33. 33.
    Park, K. H., Kim, S. Y., Rukhsana, G., Kim, B. J., Jang, K. Y., Chung, H. T., et al. (2008). Fatty acids ameliorate Doxorubicin-induced intracellular Ca++ increase and apoptosis in rat cardiomyocytes. Biological and Pharmaceutical Bulletin, 31, 809–815.PubMedCrossRefGoogle Scholar
  34. 34.
    Pawan, K., Singal, D. Sc., & Natasha Iliskovic, M. D. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339, 900–905.CrossRefGoogle Scholar
  35. 35.
    Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences of the United States of America, 87, 1620–1624.Google Scholar
  36. 36.
    Rezk, Y. A., Balulad, S. S., Keller, R. S., & Bennett, J. A. (2006). Use of resveratrol to improve the effectiveness of cisplatin and doxorubicin: study in human gynecologic cancer cell lines and in rodent heart. American Journal of Obstetrics and Gynecology, 194, 23–26.CrossRefGoogle Scholar
  37. 37.
    Rosen, G. M., & Halpern, H. J. (1990). Spin trapping biologically generated free radicals: correlating formation with cellular injury. Methods in Enzymology, 18, 611–621.CrossRefGoogle Scholar
  38. 38.
    Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts; nuclear mitochondrial and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMedCrossRefGoogle Scholar
  39. 39.
    Simunek, T., Sterba, M., Popelora, O., Adamcova, M., Hradina, R., & Gersl, V. (2009). Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports, 61, 154–171.PubMedGoogle Scholar
  40. 40.
    Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: A concise review. Journal of Molecular and Cellular Cardiology, 19, 817–828.PubMedCrossRefGoogle Scholar
  41. 41.
    Singal, P. K., Siveski-Iliskovic, N., Hill, M., Thomas, T. P., & Li, T. (1995). Combination therapy with probucol prevents Adriamycin-induced cardiomyopathy. Journal of Molecular and Cellular Cardiology, 27, 1055–1063.PubMedCrossRefGoogle Scholar
  42. 42.
    Sinha, B. K., Katki, A. G., Batist, G., et al. (1987). Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochemical Pharmacology, 36, 793–796.PubMedCrossRefGoogle Scholar
  43. 43.
    Sinha, B. K., Katki, A. G., Batist, G., et al. (1987). Differential formation of hydroxyl radicals by adriamycin in sensitive and resistant MCF-7 human breast tumor cells: Implications for the mechanism of action. Biochemistry, 26, 3776–3781.PubMedCrossRefGoogle Scholar
  44. 44.
    Pallarossa, P., Garibaldi, S., Aliteri, P., et al. (2004). Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology, 37(4), 837–846.CrossRefGoogle Scholar
  45. 45.
    Spallarossa, P., Garibaldi, S., Altieri, P., Fabbi, P., Manca, V., Nasti, S., et al. (2004). Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology, 37(4), 837–846.PubMedCrossRefGoogle Scholar
  46. 46.
    Stern, J., & Lewis, W. H. P. (1957). Serum proteins in mongolism. The Journal of Mental Science, 103, 222–226.PubMedGoogle Scholar
  47. 47.
    Wang, J., Pfleger, C. M., Friedman, L., Vittorino, R., Zhao, W., Qian, X., et al. (2010). Potential application of grape derived polyphenols in Huntington’s disease. Translational Neuroscience, 1, 95–100.PubMedCrossRefGoogle Scholar
  48. 48.
    Yalcin, E., Oruc, E., Cavusoglu, K., & Yapar, K. (2010). Protective role of grape seed extract against doxorubicin-induced cardiotoxicity and genotoxicity in Albino mice. Journal of Medicinal Food, 13, 917–925.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamakura, F., & Kawasaki, H. (2010). Post-translational modifications of superoxide dismutase. Biochimica et Biophysica Acta, 1804, 318–325.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Meherzia Mokni
    • 1
    Email author
  • Sonia Hamlaoui-Guesmi
    • 1
  • Mohamed Amri
    • 1
  • Lamjed Marzouki
    • 1
  • Ferid Limam
    • 2
  • Ezzedine Aouani
    • 2
  1. 1.Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de TunisCampus Universitaire El Manar IITunisTunisia
  2. 2.Laboratoire des Substances Bioactives, Centre de BiotechnologieTechnopole Borj-CedriaHammam-LifTunisia

Personalised recommendations