Cardiovascular Toxicology

, Volume 12, Issue 1, pp 1–9 | Cite as

The History and Future of Probenecid

  • Nathan Robbins
  • Sheryl E. Koch
  • Michael Tranter
  • Jack RubinsteinEmail author


Probenecid was initially developed with the goal of reducing the renal excretion of antibiotics, specifically penicillin. It is still used for its uricosuric properties in the treatment in gout, but its clinical relevance has sharply fallen and is rarely used today for either. Interestingly, throughout the last 60 years, there have been a host of apparently unrelated studies using probenecid in the clinical and basic research arena, including its potential use in the diagnosis and treatment of depression and its use to prevent fura-2 leakage in calcium transient studies. Recently, it has been shown that it is also an agonist of the Transient Receptor Potential Vanilloid 2 channel. Due to its unique action and new findings implicating TRPV channels in physiology and in disease, probenecid may have a new future as a research tool, and perhaps as a clinical agent in the neurology and cardiology fields. We review the history of probenecid in this paper and its potential future uses.


Probenecid History Review 


  1. 1.
    Anjak, A., Haar, L., Min, J., Durga, S., Ren, X., Tranter, M., et al. (2010). Transient receptor potential vanilloid 2 (TRPV2) stimulation is cardioprotective. Journal of Investigative Medicine, 58, 4632.Google Scholar
  2. 2.
    Ashcroft, G. W., Dow, R. C., & Moir, A. T. B. (1968). The active transport of 5-Hydroxyindol-3-ylacetic Acid and 3-Methoxy-4-hydroxyphenyl acetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthesized dog. Journal of Physiology, 199, 397–425.PubMedGoogle Scholar
  3. 3.
    Bakos, E., Evers, R., Sinkó, E., Váradi, A., Borst, P., & Sarkadi, B. (2000). Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Molecular Pharmacology, 57, 760–768.PubMedGoogle Scholar
  4. 4.
    Bang, S., Kim, K. Y., Too, S., Lee, S. H., & Hwang, S. W. (2007). Transient receptor potential Ve expressed in sensory neurons is activated by Probenecid. Neuroscience Letters, 435, 120–125.CrossRefGoogle Scholar
  5. 5.
    Barza, M., Brusch, J., Bergeron, M. G., & Weinstein, L. (1974). Penetration of antibiotics into fibrin loci in vivo. 3. Intermittent vs. continuous infusion and the effect of probenecid. Journal Infectious Disease, 129(1), 73–78.CrossRefGoogle Scholar
  6. 6.
    Beyer, K. H., Flippin, H. F., Verwey, W. F., & Woodward, R. (1944). Effect of para-aminohippuric acid on plasma concentration of penicillin in man. The Journal of American Medical Association, 126, 1007.CrossRefGoogle Scholar
  7. 7.
    Beyer, K. H., Miller, K. A., Russo, H. F., Patch, E. A., & Verwey, W. F. (1947). The inhibitory effect of Carinamide on renal elimination of penicillin. American Journal of Physiologic, 149, 355–368.Google Scholar
  8. 8.
    Beyer, R. H., Wiebelhaus, V. D., Russe, H. F., Peck, H. M., & McKinney, S. E. (1950). Benemid: An anticatabolite; its pharmacological properties. Federation Proceedings, 9, 258.Google Scholar
  9. 9.
    Beyer, K. H., Russo, H. F., Tillson, E. K., Miller, A. K., Verwey, W. F., & Gass, S. R. (1951). ‘Benemid’, p-(di-n-propylsulfamyl)-benzoic acid; its renal affinity and its elimination. American Journal of Physiologic, 166(3), 625–640.Google Scholar
  10. 10.
    Bishop, C., & Pfaff, W. (1955). Immediate uricosuric effect of probenecid in normal humans. Proceedings of the Society for Experimental Biology and Medicine, 88(3), 346–348.PubMedGoogle Scholar
  11. 11.
    Boger, W. P., Beatty, J. O., Pitts, F., & Flippin, H. F. (1950). The influence of a new benzoic acid derivative on the metabolism of para-aminosalicylic acid (PAS) and penicillin. Annals of Internal Medicine, 33(1), 18–31.PubMedGoogle Scholar
  12. 12.
    Boger, W. P., Pitts, F. W., & Gallagher, M. E. (1950). Benemid and carinamide: Comparison of effect on Para-amino-salicylic acid (PAS) plasma concentrations. Journal of Laboratory and Clinical Medicine, 36, 276–282.PubMedGoogle Scholar
  13. 13.
    Boger, W. P., & Pitts, F. W. (1950). Influence of p-(di-n-propylsulfamyl)-benzoic acid, “benemid”, on para-aminosalicylic acid (PAS) plasma concentrations. American Review of Tuberculosis, 61(6), 862–867.PubMedGoogle Scholar
  14. 14.
    Boger, W. P., & Strickland, S. C. (1955). Probenecid (Benemid): Its uses and side effects in 2502 Patients. American Medical Association Archives of Internal Medicine, 95, 83–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Bronfenbrenner, J., & Favour, C. B. (1945). Increasing and prolonging blood penicillin concentrations following intramuscular administration. Science, 101, 673–674.PubMedCrossRefGoogle Scholar
  16. 16.
    Bronsky, D., Dubin, A., & Kusher, D. S. (1955). Diuretic action of benemid: Its effects upon the urinary excretion of sodium, chloride, potassium, and water in edematous subjects. American Journal of Medicine, 18, 259–266.PubMedCrossRefGoogle Scholar
  17. 17.
    Butler, D. (2005). Wartime tactics doubles power of scarce bird-flu drug. Nature, 438, 6.PubMedCrossRefGoogle Scholar
  18. 18.
    Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 389, 816–824.PubMedCrossRefGoogle Scholar
  19. 19.
    Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J., & Julius, D. (1999). A capsaicin-receptor homologue with a high threshold for noxious heat. Nature, 398, 436–441.PubMedCrossRefGoogle Scholar
  20. 20.
    Chung, Y., Lu, C. Y., Graham, G. G., Mant, A., & Day, R. O. (2008). Utilization of allopurinol in the Australian community. Internal Medicine of Journal, 38(6), 388–395.CrossRefGoogle Scholar
  21. 21.
    Cunningham, R. F., Israili, Z. H., & Dayton, P. G. (1981). Clinical pharmacokinetics of probenecid. Clinical Pharmacokinetics, 6, 135–151.PubMedCrossRefGoogle Scholar
  22. 22.
    Day, R. O., Miners, J. O., Birkett, D. J., Whitehead, A., Naidoo, D., Hayes, J., et al. (1988). Allopurinol dosage selection: Relationships between dose and plasma oxipurinol and urate concentrations and urinary urate excretion. British Journal of Clinical Pharmacology, 26(4), 423–428.PubMedGoogle Scholar
  23. 23.
    Despopoulos, A., & Weissbach, H. (1957). Renal metabolism of 5-hydroxyindolacetic acid. American Journal of Physiology, 189, 548–550.PubMedGoogle Scholar
  24. 24.
    Di Virgilio, F., Steinberg, T. H., Swanson, J. A., & Silverstein, S. C. (1988). Fura-2 secretion and sequestration in macrophages. A blocker of organic anion transport reveals that these processes occur via a membrane transport system for organic anions. Journal of Immunology, 140(3), 915–920.Google Scholar
  25. 25.
    Erttmann, R. R. (1978). Kinetics and inotropic action of probenecid in guinea-pig heart in vitro. Cellular and Molecular Life Sciences, 34(12), 1620–1622.CrossRefGoogle Scholar
  26. 26.
    Forbes, M., & Becker, B. (1960). The transport of organic anions by the rabbit eye. II. In vivo transport of iodopyracet (Diodrast). American Journal of Ophthalmology, 50, 867–875.PubMedGoogle Scholar
  27. 27.
    Gordon, E. K., Markey, S. P., Sherman, R. L., & Kopin, I. J. (1976). Conjugated 3, 4 dihydroxyphenyl acetic acid (DOPAC) in human and monkey cerebrospinal fluid and rat brain and the effects of Probenecid. Life Sciences, 18, 1285–1292.PubMedCrossRefGoogle Scholar
  28. 28.
    Greene, T. A., Alarcon, S., Thomas, A., Berdougo, E., Doranz, B. J., Breslin, P. A. S., & Rucker, J. B. (2011) Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin. PLOS One, 6(5), e20123.Google Scholar
  29. 29.
    Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry, 260(6), 3440–3450.PubMedGoogle Scholar
  30. 30.
    Guldberg, H. C., Ashcroft, G. W., & Crawford, T. B. B. (1966). Concentration of 5-hydroxyindolyacetic acid and homovanillic acid in the cerebrospinal fluid of the dog before and during treatment with Probenecid. Life Sciences, 5, 1571–1575.PubMedCrossRefGoogle Scholar
  31. 31.
    Gutman, A. B. (1950). Uric acid metabolism in gout. American Journal of Medicine, 9(6), 799–817.CrossRefGoogle Scholar
  32. 32.
    Gutman, A. B., & Yu, T. F. (1951). Benemid (p-di-n-propylsulfamyl)-benzoic acid) as uricosuric agent in chronic gouty arthritis. Transactions of the Association of American Physicians, 64, 279–288.PubMedGoogle Scholar
  33. 33.
    Haar, L., Rubinstein, J., & Tranter, M., et al. (2010) Myocardial TRPV activation associated with high fat diet and cardioprotection. FASEB Journal, 24, 57314.Google Scholar
  34. 34.
    Hilaire, M. L., & Wozniak, J. R. (2010). Gout: Overview and newer therapeutic developments. Formulary, 45, 84–90.Google Scholar
  35. 35.
    Hill, G., Cihlar, T., Oo, C., Ho, E. S., Prior, K., Wiltshire, H., et al. (2002). The Anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactins via renal secretion-correlation of in vivo and in vitro studies. Drug Metabolism Disposition, 30, 13–19.CrossRefGoogle Scholar
  36. 36.
    Hilton, A. L. (1959). Treatment of gonorrhoea with P.A.M., & probenecid. The British Journal of Venereal Diseases, 35, 249–251.PubMedGoogle Scholar
  37. 37.
    Hilton, A. L. (1971). PAM plus probenecid and procaine penicillin plus probenecid in gonorrhoea. The British Journal of Venereal Diseases, 47(2), 107–110.PubMedGoogle Scholar
  38. 38.
    Hu, H. Z., Gu, Q., Wang, C., Colton, C. K., Tang, J., Kinoshita-Kawada, M., et al. (2004). 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. Journal of Biological Chemistry, 279(34), 35741–35748.PubMedCrossRefGoogle Scholar
  39. 39.
    Insel, P. A. (1996). Analgesic-antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout. In J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, & A. Goodman Gilman (Eds.), Gilman’s Goodman the pharmacological basis of therapeutics (9th ed., pp. 617–657). USA: McGraw-Hill.Google Scholar
  40. 40.
    Israili, Z. H., Percel, J. M., Cunningham, R. F., Dayton, P. G., Yü, T. F., Gutman, A. B., et al. (1972). Metabolites of probenecid. Chemical, physical, and pharmacological studies. Journal of Medicinal Chemistry, 15(7), 709–713.PubMedCrossRefGoogle Scholar
  41. 41.
    Juvin, V., Penna, A., Chemin, J., Lin, Y. L., & Rassendren, F. A. (2007). Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Molecular Pharmacology, 72(5), 1258–1268.PubMedCrossRefGoogle Scholar
  42. 42.
    Kahn, A. M., & Weinman, E. J. (1985). Urate transport in the proximal tubule: In vivo and in vesicle studies. American Journal of Physiology, 249, F789–F798.PubMedGoogle Scholar
  43. 43.
    Keenan, R., O’brien, W., Lee, K., Crittenden, D., Fisher, M., Goldfarb, D., et al. (2011). Prevalence of contraindications and prescription of pharmacologic therapies for gout. The American Journal of Medicine, 124(2), 155–163.PubMedCrossRefGoogle Scholar
  44. 44.
    Kenwright, S., & Levi, A. J. (1973). Impairment of hepatic uptake of rifamycin antibiotics by probenecid, and its therapeutic implications. Lancet, 302(7843), 1401–1405.CrossRefGoogle Scholar
  45. 45.
    Korf, J., & van Praag, H. M. (1970). The intravenous probenecid test: A possible aid in evaluation of the serotonin hypothesis on the pathogenesis of depressions. Psychopharmacologia, 18(1), 129–132.PubMedCrossRefGoogle Scholar
  46. 46.
    Kunert-Keil, C., Bisping, F., Krüger, J., & Brinkmeier, H. (2006). Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics, 7, 159.PubMedCrossRefGoogle Scholar
  47. 47.
    Kushner, D., Dubin, A., & Bronsky, D. (1954). Effect of Benemid on excretion of water, sodium and chloride in congestive heart failure. Federation Proceedings, 13, 435.Google Scholar
  48. 48.
    Kuzell, W., Schaffarzick, R., Naugler, W., Koets, P., Mankle, E., Brown, B., et al. (1955). Some observations on 520 gouty patients. Journal of Chronic Diseases, 2(6), 645–669.PubMedCrossRefGoogle Scholar
  49. 49.
    Lake, C. R., Wood, J. H., Ziegler, M. G., Ebert, M. H., & Kopin, I. J. (1978). Probenecid-induced norepinephrine elevations in plasma and CSF. Archives of General Psychiatry, 35, 237–240.PubMedCrossRefGoogle Scholar
  50. 50.
    Landersdorfer, C. B., Kirkpatrick, C. M., Kinzig, M., Bulitta, J. B., Holzgrabe, U., Jaehde, U., et al. (2010). Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by Probenecid. British Journal of Clinical Pharmacology, 69, 167–178.PubMedCrossRefGoogle Scholar
  51. 51.
    Malgaroli, A., Milani, D., Meldolesi, J., & Pozzan, T. (1987). Fura-2 measurement of cytosolic free Ca2 + in monolayers and suspensions of various types of animal cells. Journal of Cell Biology, 105(5), 2145–2155.PubMedCrossRefGoogle Scholar
  52. 52.
    McDonough, P. M., & Button, D. C. (1989). Measurement of cytoplasmic calcium concentration in cell suspensions: Correction for extracellular fura-2 through use of Mn2 + and probenecid. Cell Calcium, 10(3), 171–180.PubMedCrossRefGoogle Scholar
  53. 53.
    McKinney, S. E., Peck, H. M., Bochey, J. M., Byham, B. B., Schuchardt, G. S., & Beyer, K. H. (1951). Benemid p-(di-n-sulfyaml)-benzoid acid; toxicologic properties. The Journal of Pharmacology and Experimental Therapeutics, 102(3), 208–214.PubMedGoogle Scholar
  54. 54.
    Meads, M., Knight, V. H., & Izlar, H. L., Jr. (1951). The enhancement of serum penicillin in man by benemid. Southern Medical Journal, 44(4), 297–302.PubMedCrossRefGoogle Scholar
  55. 55.
    Mitsui, M., Abe, A., Tajimi, M., & Karaki, H. (1993). Leakage of the fluorescent Ca2 + indicator fura-2 in smooth muscle. Japanese Journal of Pharmacology, 61(3), 165–170.PubMedCrossRefGoogle Scholar
  56. 56.
    Münnich, D., Békési, S., Lakatos, M., & Bardovics, E. (1974). Treatment of typhoid carriers with amoxycillin and in combination with probenecid. Chemotherapy, 20(1), 29–38.PubMedCrossRefGoogle Scholar
  57. 57.
    Neff, N. H., Tozer, T. N., & Brodie, B. B. (1967). Application of steady-state kinetics to studies of the transfer of 5-hydroxyindolacetic acid and from brain to plasma. The Journal of Pharmacology and Experimental Therapeutics, 158, 214–218.Google Scholar
  58. 58.
    Penna, A., Juvin, V., Chemin, J., Compan, V., Monet, M., & Rassendren, F. A. (2006). PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium, 39(6), 495–507.PubMedCrossRefGoogle Scholar
  59. 59.
    Perel, J. M., Cunningham, R. F., Fales, H. M., & Dayton, P. G. (1970). Identification and renal excretion of probenecid metabolites in man. Life Sciences Pt. I: Physiology and Pharmacology, 9(23), 1337–1343.Google Scholar
  60. 60.
    Qin, N., Neeper, M. P., Liu, Y., Hutchinson, T. L., Lubin, M. L., & Flores, C. M. (2008). TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. Journal of Neuroscience, 28(24), 6231–6238.PubMedCrossRefGoogle Scholar
  61. 61.
    Rammelkamp, C. H., & Bradley, S. E. (1943). Excretion of penicillin in man. Proceedings of Society Experimental Biology and Medicine, 53, 30.Google Scholar
  62. 62.
    Reynolds, E. S., Schlant, R. C., Gonick, H. C., & Dammin, G. J. (1957). Fatal Massive Necrosis of the liver as a manifestation of hypersensitivity to probenecid. New England Journal of Medicine, 256, 592–596.PubMedCrossRefGoogle Scholar
  63. 63.
    Rider, T. G., & Jordan, K. M. (2010). The modern management of gout. Rheumatology (Oxford), 49(1), 5–14.CrossRefGoogle Scholar
  64. 64.
    Roch-Ramel, F., & Guisan, B. (1999). Renal transport of urate in humans. News Physiol Science, 14, 80–84.Google Scholar
  65. 65.
    Rose, R. A., Hatano, N., Ohya, S., Imaizumi, Y., & Giles, W. R. (2007). C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptideC receptor-mediated signaling. Journal of Physiology, 580(1), 255–274.PubMedCrossRefGoogle Scholar
  66. 66.
    Schnabolk, G. W., Gupta, B., Mulgaonkar, A., Kulkarni, M., & Sweet, D. H. (2010). Prganic anion transporter 6 (S/c22a20) specificity and sertoli cell-specific expression provide new insight on potential endogenous roles. Journal of Pharmaceutical Experimental Therapeutic, 334, 927–935.CrossRefGoogle Scholar
  67. 67.
    Selen, A., Amidon, G. L., & Welling, P. G. (1982). Pharmacokinetics of probenecid following oral doses to human volunteers. Journal of Pharmaceutical Science, 71(11), 1238–1242.CrossRefGoogle Scholar
  68. 68.
    Silva-Adaya, D., Pérez-De La Cruz, V., Villeda-Hernández, J., Carrillo-Mora, P., González-Herrera, I. G., García, E., et al. (2011). Protective effect of l-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: Implications of modulating kynurenate as a protective strategy. Neurotoxicology and Teratology, 33(2), 303–312.PubMedCrossRefGoogle Scholar
  69. 69.
    Sirota, J. H., Yu, T. F., & Gutman, A. B. (1952). Effect of benemid (p-[di-n-propylsulfamyl]-benzoic acid) on urate clearance and other discrete renal functions in gouty subjects. Journal of Clinical Investigation, 31(7), 692–701.PubMedCrossRefGoogle Scholar
  70. 70.
    Solomon, D., Avorn, J., Levin, R., & Brookhart, M. (2008). Uric acid lowering therapy: Prescribing patterns in a large cohort of older adults. Annals of Rheumatic Disease, 67, 609–613.CrossRefGoogle Scholar
  71. 71.
    Smith, D. E., Gee, W. L., Brater, D. C., Lin, E. T., & Benet, L. Z. (1980). Preliminary evaluation of furosemide-probenecid interaction in humans. Journal of Pharmaceutical Science, 69(5), 571–575.CrossRefGoogle Scholar
  72. 72.
    Stocker, S. L., Graham, G. G., McLachlan, A. J., Williams, K. M., & Day, R. O. (2011). Pharmacokinetic and pharmacodynamic interaction between allopurinol and probenecid in patients with gout. The Journal of Rheumatology, 38, 5.CrossRefGoogle Scholar
  73. 73.
    Talbott, J. H. (1951). Clinical and metabolic effects of benemid in gout. Bulletin on the Rheumatic Diseases, 2(1), 1–2.PubMedGoogle Scholar
  74. 74.
    Teng, G. G., Nair, R., & Saag, K. G. (2006). Pathophysiology, clinical presentation and treatment of gout. Drugs, 66(12), 1547–1563.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsien, R. Y., Rink, T. J., & Poenie, M. (1985). Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium, 6(1–2), 145–157.PubMedCrossRefGoogle Scholar
  76. 76.
    Utsynomiya, Y., Hara, Y., Ito, H., Okonogi, H., Miyazaki, Y., Hashimoto, Y., et al. (2010). Effects of probenecid on the pharmacokinetics of mizoribine and co-administration of the two drugs in patients with nephrotic syndrome. International Journal of Clinical Pharmacology Therapeutics, 48(11), 751–755.Google Scholar
  77. 77.
    van Praag, H. M., Korf, J., & Schut, D. (1973) Cerebral monoamines and depression. An investigation with the Probenecid technique. Archives of General Psychiatry, 28(6), 827–831.Google Scholar
  78. 78.
    van Praag, H. M., Flentge, F., Korf, L., Dols, L. C., & Schut, T. (1973). The influence of probenecid on the metabolism of serotonin, dopamine, and their precursors in man. Psychopharmacologia, 33, 141–151.Google Scholar
  79. 79.
    Vriens, J., Appendino, G., & Nilius, B. (2009). Pharmacology of vanilloid transient receptor potential cation channels. Molecular Pharmacolgy., 75, 1262–1279.CrossRefGoogle Scholar
  80. 80.
    Wolf, D. L., Rodríguez, C. A., Mucci, M., Ingrosso, A., Duncan, B. A., & Nickens, D. J. (2003). Pharmacokinetics and renal effects of cidofovir with a reduced dose of probenecid in HIV-infected patients with cytomegalovirus retinitis. Journal of Clinical Pharmacology, 43(1), 43–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Wolfson, W. Q., Cohn, C., Levine, R., & Huddlestun, B. (1948). Transport and excretion of uric acid in man. III Physiological significance of the uricosuric effect of caronamide. American Federation for Clinical Research, 4(5), 774.Google Scholar
  82. 82.
    Wu, H., Liu, M., Wang, S., Feng, W., Yao, W., Zhao, H., et al. (2010). Pharmacokinetic properties and bioequivalence of two compound formulations of 1500 mg ampicillin (1167 mg)/probenecid (333 mg): a randomized-sequence, single-dose, open-label, two-period crossover study in healthy Chinese male volunteers. Clinical Therapeutics, 32(3), 597–606.PubMedCrossRefGoogle Scholar
  83. 83.
    Yü, T. F., & Gutman, A. B. (1951). Mobilization of gouty tophi by protracted use of uricosuric agents. American Journal of Medicine, 11(6), 765–769.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathan Robbins
    • 1
  • Sheryl E. Koch
    • 1
  • Michael Tranter
    • 2
  • Jack Rubinstein
    • 1
    Email author
  1. 1.Department of Internal Medicine, Division of Cardiovascular Diseases, College of MedicineUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Physiology and Cell BiologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations