Cardiovascular Toxicology

, Volume 11, Issue 2, pp 180–190 | Cite as

Metabolic Remodeling During H9c2 Myoblast Differentiation: Relevance for In Vitro Toxicity Studies

  • Sandro L. Pereira
  • João Ramalho-Santos
  • Ana F. Branco
  • Vilma A. Sardão
  • Paulo J. Oliveira
  • Rui A. Carvalho


H9c2 cells, derived from the ventricular part of an E13 BDIX rat heart, possess a proliferative and relatively undifferentiated phenotype but can be readily directed to differentiate under reduced serum conditions originating cells presenting muscle features. Skeletal or cardiac phenotypes can be originated depending on whether or not serum reduction is accompanied by a daily treatment with all-trans-retinoic acid. In the present study, we aimed to characterize and compare the metabolic profile of H9c2 cells at various differentiation states, correlating the differences between different populations with muscle-specific development. We determined that H9c2 myoblasts remodel their metabolism upon differentiation, with undifferentiated cells more reliant on glycolysis, as demonstrated by higher lactate production rates. Differentiated cells adopted a more oxidative metabolism with better coupling between the glycolytic and oxidative pathways, which is indicative of a metabolic evolvement toward a higher energetic efficiency state. Our findings emphasize the metabolic differences between differentiated and undifferentiated H9c2 cells and raise caution on how to adequately select the H9c2 differentiation state that will act as the better model for the design of experimental studies.


H9c2 myoblasts Cell differentiation Metabolism NMR isotopomer analysis Cardiotoxicology 



The authors thank Gonçalo Pereira, Dr. Mario Grãos and Dr. Anabela Rolo for their assistance in the different phases of the work. Financial Support: SLP is the recipient of a PhD fellowship (SFRH/BD/37933/2007). The present work was funded by research grants POCI/SAU-OBS/55802/2004, PTDC/QUI/64358/2006, and PTDC/EBB-EBI/101114/2008 from the Portuguese Foundation for Science and Technology. We acknowledge the National NMR Network for access to the facilities. The Varian VNMRS 600 MHz spectrometer is part of the National NMR Network and was purchased in the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and Fundação para a Ciência e a Tecnologia (FCT).

Conflict of interest



  1. 1.
    Brand, T. (2003). Heart development: Molecular insights into cardiac specification and early morphogenesis. Developmental Biology, 258, 1–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.PubMedCrossRefGoogle Scholar
  3. 3.
    Lehman, J. J., & Kelly, D. P. (2002). Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clinical and Experimental Pharmacology and Physiology, 29, 339–345.PubMedCrossRefGoogle Scholar
  4. 4.
    Makinde, A. O., Kantor, P. F., & Lopaschuk, G. D. (1998). Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Molecular and Cellular Biochemistry, 188, 49–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Lopaschuk, G. D., & Jaswal, J. S. (2010). Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. Journal of Cardiovascular Pharmacology, 56, 130–140.PubMedCrossRefGoogle Scholar
  6. 6.
    Fisher, D. J., Heymann, M. A., & Rudolph, A. M. (1981). Myocardial consumption of oxygen and carbohydrates in newborn sheep. Pediatric Research, 15, 843–846.PubMedGoogle Scholar
  7. 7.
    Werner, J. C., & Sicard, R. E. (1987). Lactate metabolism of isolated, perfused fetal, and newborn pig hearts. Pediatric Research, 22, 552–556.PubMedCrossRefGoogle Scholar
  8. 8.
    Girard, J., Ferre, P., Pegorier, J. P., & Duee, P. H. (1992). Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiological Reviews, 72, 507–562.PubMedGoogle Scholar
  9. 9.
    Lopaschuk, G. D., Spafford, M. A., & Marsh, D. R. (1991). Glycolysis is predominant source of myocardial ATP production immediately after birth. American Journal of Physiology, 261, H1698–H1705.PubMedGoogle Scholar
  10. 10.
    Ferre, P., Decaux, J. F., Issad, T., & Girard, J. (1986). Changes in energy metabolism during the suckling and weaning period in the newborn. Reproduction, Nutrition, Development, 26, 619–631.PubMedCrossRefGoogle Scholar
  11. 11.
    Taegtmeyer, H. (1994). Energy metabolism of the heart: from basic concepts to clinical applications. Current Problems in Cardiology, 19, 59–113.PubMedCrossRefGoogle Scholar
  12. 12.
    Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMedCrossRefGoogle Scholar
  13. 13.
    Pagano, M., Naviglio, S., Spina, A., Chiosi, E., Castoria, G., Romano, M., et al. (2004). Differentiation of H9c2 cardiomyoblasts: The role of adenylate cyclase system. Journal of Cellular Physiology, 198, 408–416.PubMedCrossRefGoogle Scholar
  14. 14.
    Saeedi, R., Saran, V. V., Wu, S. S., Kume, E. S., Paulson, K., Chan, A. P., et al. (2009). AMP-activated protein kinase influences metabolic remodeling in H9c2 cells hypertrophied by arginine vasopressin. American Journal of Physiology Heart Circulatory Physiology, 296, H1822–H1832.CrossRefGoogle Scholar
  15. 15.
    Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2007). Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biology, 8, 11.PubMedCrossRefGoogle Scholar
  16. 16.
    Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemotherapy and Pharmacology, 64, 811–827.PubMedCrossRefGoogle Scholar
  17. 17.
    Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMedCrossRefGoogle Scholar
  18. 18.
    Cselenyak, A., Pankotai, E., Horvath, E. M., Kiss, L., & Lacza, Z. (2010). Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biology, 11, 29.PubMedCrossRefGoogle Scholar
  19. 19.
    Mukhopadhyay, P., Rajesh, M., Batkai, S., Kashiwaya, Y., Hasko, G., Liaudet, L., et al. (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart Circulatory Physiology, 296, H1466–H1483.CrossRefGoogle Scholar
  20. 20.
    Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., & Lory, P. (1999). Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem, 274, 29063–29070.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu, Z., Song, X. D., Xin, Y., Wang, X. J., Yu, H., Bai, Y. Y., et al. (2009). Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicity in vitro. Chinese Medicine Journal, 122, 2652–2656. (Engl).Google Scholar
  22. 22.
    Rolo, A. P., Palmeira, C. M., & Cortopassi, G. A. (2009). Biosensor plates detect mitochondrial physiological regulators and mutations in vivo. Analytical Biochemistry, 385, 176–178.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi, W. S., Kruse, S. E., Palmiter, R. D., & Xia, Z. (2008). Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP + , or paraquat. Proceedings of National Academy of Science USA, 105, 15136–15141.CrossRefGoogle Scholar
  24. 24.
    Swiderski, R. E., & Solursh, M. (1990). Precocious appearance of cardiac troponin T pre-mRNAs during early avian embryonic skeletal muscle development in ovo. Developmental Biology, 140, 73–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Ng, K. M., Lee, Y. K., Chan, Y. C., Lai, W. H., Fung, M. L., Li, R. A., et al. (2010). Exogenous expression of HIF-1 alpha promotes cardiac differentiation of embryonic stem cells. Journal of Molecular and Cellular Cardiology, 48, 1129–1137.PubMedCrossRefGoogle Scholar
  26. 26.
    Bettiol, E., Sartiani, L., Chicha, L., Krause, K. H., Cerbai, E., & Jaconi, M. E. (2007). Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation, 75, 669–681.PubMedCrossRefGoogle Scholar
  27. 27.
    Kunnecke, B., & Cerdan, S. (1989). Multilabeled 13C substrates as probes in in vivo 13C and 1H NMR spectroscopy. NMR in Biomedicine, 2, 274–277.PubMedCrossRefGoogle Scholar
  28. 28.
    Leu, M., Ehler, E., & Perriard, J. C. (2001). Characterisation of postnatal growth of the murine heart. Anatomy and Embryology, 204, 217–224. (Berl).PubMedCrossRefGoogle Scholar
  29. 29.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033.PubMedCrossRefGoogle Scholar
  30. 30.
    Facucho-Oliveira, J. M., & St John, J. C. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Reviews, 5, 140–158.PubMedCrossRefGoogle Scholar
  31. 31.
    Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P. C., Sousa, A. P., & Amaral, A. (2009). Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Human Reproduction Update, 15, 553–572.PubMedCrossRefGoogle Scholar
  32. 32.
    Mathupala, S. P., Ko, Y. H., & Pedersen, P. L. (2010). The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochimica et Biophysica Acta, 1797, 1225–1230.PubMedCrossRefGoogle Scholar
  33. 33.
    Olstad, E., Qu, H., & Sonnewald, U. (2007). Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons. Journal of Cerebral Blood Flow and Metabolism, 27, 811–820.PubMedGoogle Scholar
  34. 34.
    Sonnewald, U., Schousboe, A., Qu, H., & Waagepetersen, H. S. (2004). Intracellular metabolic compartmentation assessed by 13C magnetic resonance spectroscopy. Neurochemistry International, 45, 305–310.PubMedCrossRefGoogle Scholar
  35. 35.
    Anousis, N., Carvalho, R. A., Zhao, P., Malloy, C. R., & Sherry, A. D. (2004). Compartmentation of glycolysis and glycogenolysis in the perfused rat heart. NMR in Biomedicine, 17, 51–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Feron, O. (2009). Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiotherapy & Oncology, 92, 329–333.CrossRefGoogle Scholar
  37. 37.
    Bracha, A. L., Ramanathan, A., Huang, S., Ingber, D. E., & Schreiber, S. L. (2010). Carbon metabolism-mediated myogenic differentiation. Nat Chem Biol, 6, 202–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta, 1588, 94–101.PubMedGoogle Scholar
  39. 39.
    Silva, J. P., Sardao, V. A., Coutinho, O. P., & Oliveira, P. J. (2010). Nitrogen compounds prevent h9c2 myoblast oxidative stress-induced mitochondrial dysfunction and cell death. Cardiovascular Toxicology, 10, 51–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sandro L. Pereira
    • 1
  • João Ramalho-Santos
    • 1
    • 2
  • Ana F. Branco
    • 1
  • Vilma A. Sardão
    • 1
  • Paulo J. Oliveira
    • 1
    • 2
  • Rui A. Carvalho
    • 1
    • 2
  1. 1.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Life Sciences, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations