Cardiovascular Toxicology

, Volume 11, Issue 1, pp 67–73 | Cite as

Homocysteine Induces Oxidative–Nitrative Stress in Heart of Rats: Prevention by Folic Acid

  • Janaína Kolling
  • Emilene B. Scherer
  • Aline Andrea da Cunha
  • Maira Jaqueline da Cunha
  • Angela T. S. Wyse


Hyperhomocysteinemia is a risk factor for cardiovascular disease, stroke, and thrombosis; however, the mechanisms by which homocysteine triggers these dysfunctions are not fully understood. In the present study, we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely thiobarbituric acid reactive substances, an index of lipid peroxidation, 2′,7′-dichlorofluorescein (H2DCF) oxidation, activities of antioxidant enzymes named superoxide dismutase and catalase, as well as nitrite levels in heart of young rats. We also evaluated the effect of folic acid on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3–0.6 μmol/g body weight) and/or folic acid (0.011 μmol/g body weight) from their 6th to the 28th day of life. Controls and treated rats were killed 1 h and/or 12 h after the last injection. Results showed that chronic homocysteine administration increases lipid peroxidation and reactive species production and decreases enzymatic antioxidant defenses and nitrite levels in the heart of young rats killed 1 h, but not 12 h after the last injection of homocysteine. Folic acid concurrent administration prevented homocysteine effects probable by its antioxidant properties. Our data indicate that oxidative stress is elicited by chronic hyperhomocystenemia, a mechanism that may contribute, at least in part, to the cardiovascular alterations characteristic of hyperhomocysteinemic patients. If confirmed in human beings, our results could propose that the supplementation of folic acid can be used as an adjuvant therapy in cardiovascular alterations caused by homocysteine.


Hyperhomocysteinemia Homocysteine Oxidative stress Vascular damage Cardiovascular disease 



This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil), FINEP Research Grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)-Proc. No. 01.06.0842-00”, and “Instituto Nacional de Ciência e Tecnologia (INCT) para Excitotoxicidade e Neuroproteção (INCT/CNPq)”.


  1. 1.
    Herrmann, W., Quast, S., Ullrich, M., Schultze, H., Bodis, M., & Geisel, J. (1999). Hyperhomocysteinemia in high-aged subjects: Relation of B-vitamins, folic acid, renal function and the methylenetetrahydrofolate reductase mutation. Atherosclerosis, 144, 91–101.CrossRefPubMedGoogle Scholar
  2. 2.
    Hansrani, M., Gillespie, J. I., & Stansby, G. (2002). Homocysteine in Myointimal Hyperplasia. European Journal of Vascular and Endovascular Surgery, 23, 3–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Mudd, S. H., Levy, H. L., & Skovby, F. (2001). Disorders of transsulfuration. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic and molecular basis of inherited disease (Vol. 2, pp. 1279–1327). New York: McGraw-Hill.Google Scholar
  4. 4.
    Fowler, B. (1997). Disorders of homocysteine metabolism. Journal of Inherited Metabolic Disease, 20, 270–285.CrossRefPubMedGoogle Scholar
  5. 5.
    De Franchis, R., Sperandeo, M. P., Sebastio, G., & Andria, G. (1998). Clinical aspects of cystathionine β-synthase: How wide is the spectrum? European Journal of Pediatrics, 157, 67–70.CrossRefGoogle Scholar
  6. 6.
    Kuhn, W., Roebroek, R., Blom, H., van Oppenraaij, D., Przuntek, H., Kretschmer, A., et al. (1998). Elevated plasma levels of homocysteine in Parkinson’s disease. European Neurology, 40, 225–227.CrossRefPubMedGoogle Scholar
  7. 7.
    Harker, L. A., Harlan, J. M., & Ross, R. (1983). Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons. Circulation Research, 53, 731–739.PubMedGoogle Scholar
  8. 8.
    Halliwell, B., & Gutteridge, J. M. (1984). Oxigen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal, 219, 1–14.PubMedGoogle Scholar
  9. 9.
    White, A. R., Huang, X., Jobling, M. F., Barrow, C. J., Beyreuther, K., Masters, C. L., et al. (2001). Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: Possible risk factors in the Alzheimer’s-type neurodegenerative pathways. Journal of Neurochemestry, 76, 1509–1520.CrossRefGoogle Scholar
  10. 10.
    Hazell, A. S. (2007). Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochemistry International, 50, 941–953.CrossRefPubMedGoogle Scholar
  11. 11.
    Shi, H., & Liu, K. J. (2007). Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Frontiers in Bioscience, 12, 1318–1328.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu, X., Smith, M. A., Honda, K., Aliev, G., Moreira, P. I., Nunomura, A., et al. (2007). Vascular oxidative stress in Alzheimer disease. Journal of the Neurological Sciences, 257, 240–246.CrossRefPubMedGoogle Scholar
  13. 13.
    Dayal, S., & Lentz, S. R. (2007). Role of redox reactions in the vascular phenotype of hyperhomocysteinemic animals. Antioxidants & Redox Signaling, 11, 1899–1909.CrossRefGoogle Scholar
  14. 14.
    Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine. New York: Oxford University Press.Google Scholar
  15. 15.
    Becker, J. S., Adler, A., Schneeberger, A., Huang, H., Wang, Z., Walsh, E., et al. (2005). Hyperhomocysteinemia, a cardiac metabolic disease role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation, 111, 2112–2118.CrossRefPubMedGoogle Scholar
  16. 16.
    Tuteja, N., Chandra, M., Tuteja, R., & Misra, M. K. (2004). Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. Journal of Biomedicine and Biotechnology, 4, 227–237.CrossRefGoogle Scholar
  17. 17.
    Brosnan, J. T., Jacobs, R. L., Stead, L. M., & Brosnan, M. E. (2004). Methylation demand: A key determinant of homocysteine metabolism. Acta Biochimica Polonica, 51, 405–413.PubMedGoogle Scholar
  18. 18.
    Siri, P. W., Verhoef, P., & Kok, F. J. (1998). Vitamins B6, B12, and folate: Association with plasma total homocysteine and risk of coronary atherosclerosis. Journal of the American College of Nutrition, 17, 435–441.PubMedGoogle Scholar
  19. 19.
    Racek, J., Rusnakova, H., Trefil, L., & Siala, K. K. (2005). The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiological Research, 54, 87–95.PubMedGoogle Scholar
  20. 20.
    Patro, B. S., Adhikari, S., Mukherjee, T., & Chattopadhyay, S. (2006). Folic acid as a Fenton-modulator: Possible physiological implication. Journal of Medicinal Chemestry, 2, 407–413.CrossRefGoogle Scholar
  21. 21.
    Matté, C., Scherer, E. B., Stefanello, F. M., Barschak, A. G., Vargas, C. R., Netto, C. A., et al. (2007). Concurrent folate treatment prevents Na+, K+ -ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. International Journal of Developmental Neuroscience, 25, 545–552.CrossRefPubMedGoogle Scholar
  22. 22.
    Matté, C., Mackedanz, V., Stefanello, F. M., Scherer, E. B., Andreazza, A. C., Zanotto, C., et al. (2009). Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: Protective effect of folic acid. Neurochemistry International, 54, 7–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Streck, E. L., Matté, C., Vieira, P. S., Rombaldi, F., Wannmacher, C. M. D., Wajner, M., et al. (2002). Reduction of Na+, K+ -ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochemical Research, 27, 1585–1590.CrossRefGoogle Scholar
  24. 24.
    Lalonde, R., Joyal, C. C., & Botez, M. I. (1993). Effects of folic acid and folinic acid on cognitive and motor behaviors in 20-month-old rats. Pharmacology, Biochemistry and Behavior, 44, 703–707.CrossRefGoogle Scholar
  25. 25.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMedGoogle Scholar
  26. 26.
    Lebel, C. P., Ischiropoulos, H., & Bondy, S. C. (1992). Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology, 5, 227–231.CrossRefPubMedGoogle Scholar
  27. 27.
    Marklund, S. L. (1985). Pyrogallol autoxidation. In R. A. Greenwald (ed.), Handbook for oxygen radical research (pp. 243–247). Boca Raton: CRC Press.Google Scholar
  28. 28.
    Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.CrossRefPubMedGoogle Scholar
  29. 29.
    Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite and [15 N]nitrate in biological fluids. Analytical Biochemistry, 126, 131–138.CrossRefPubMedGoogle Scholar
  30. 30.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & RandalL, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–267.PubMedGoogle Scholar
  31. 31.
    Perry, D. J. (1999). Hyperhomocysteinemia. Baillieres Clinical Haematology., 12, 451–477.Google Scholar
  32. 32.
    Eikelboom, J. W., Lonn, E., Genest, J., Jr., Hankey, G. J., & Yusuf, S. (1999). Homocyst(e)ine and cardiovascular disease: A critical review of the epidemiologic evidence. Annals of Internal Medicine, 131, 363–375.PubMedGoogle Scholar
  33. 33.
    Tavares, J. R., D’almeida, V., Diniz, D. C., Terzi, C. A., Cruz, E. N., Stefani, E., et al. (2002). Analisis of plasma homocysteine levels in patients with unstable angina. Arquivos Brasileiros de Cardiologia, 79, 167–172.CrossRefGoogle Scholar
  34. 34.
    Dias, P. M. T., Mezzomo, A., Peteffi, C., & Pezzi, D. R. (2001). Homocisteína: Um fator de risco vascular. Revista Científica da AMECS, 1, 53–58.Google Scholar
  35. 35.
    Lemieux, H., Bulteau, A. L., Friguet, B., Tardif, J. C., Blier, P. U. (2010). Dietary fatty acids and oxidative stress in the heart mitochondria. Mitochondrion, in press.Google Scholar
  36. 36.
    Pillai, V. B., Sundaresan, N. R., Jeevanandam, V., & Gupta, M. P. (2010). Mitochondrial SIRT3 and heart disease. Cardiovascular Research, 88, 250–256.CrossRefPubMedGoogle Scholar
  37. 37.
    Stehr, C. B., Mellado, R., Ocaranza, M. P., Carvajal, C. A., Mosso, L., Becerra, E., et al. (2010). Increased levels of oxidative stress, subclinical inflammation, and myocardial fibrosis markers in primary aldosteronism patients. Journal of Hypertension, 28, 2120–2126.PubMedGoogle Scholar
  38. 38.
    Misra, M. K., Sarwat, M., Bhakuni, P., Tuteja, R., & Tuteja, N. (2009). Oxidative stress and ischemic myocardial syndromes. Medical Science Monitor, 15, 209–219.Google Scholar
  39. 39.
    Radi, R., Turrens, J. F., Chang, L. Y., Bush, K. M., Crapo, J. D., & Freeman, B. A. (1991). Detection of catalase in rat heart mitochondria. The Journal of Biological Chemistry, 226, 22028–22034.Google Scholar
  40. 40.
    Dayal, S., Arning, E., Bottiglieri, T., Boger, R. H., Sigmund, C. D., Faraci, F. M., et al. (2004). Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke, 35, 1957–1962.CrossRefPubMedGoogle Scholar
  41. 41.
    Faraci, F. M., & Lentz, S. R. (2004). Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke, 35, 345–347.CrossRefPubMedGoogle Scholar
  42. 42.
    Nappo, F., De Rosa, N., Marfella, R., De Lucia, D., Ingrosso, D., Perna, A. F., et al. (1999). Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. Journal of the American Medical Association, 22, 2113–2118.CrossRefGoogle Scholar
  43. 43.
    Tsai, J. C., Perrella, M. A., Yoshizumi, M., Hsieh, C. M., Haber, E., Schlegel, R., et al. (1994). Promotion of vascular smooth muscle cell growth by homocysteine: A link to atherosclerosis. Proceedings of the National Academy of Sciences, 91, 6369–6373.CrossRefGoogle Scholar
  44. 44.
    Wang, H., Yoshizumi, M., Lai, K., Tsai, J. C., Perrella, M. A., Haber, E., et al. (1997). Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. The Journal of Biological Chemistry, 272, 25380–25385.CrossRefPubMedGoogle Scholar
  45. 45.
    Tang, L., Mamotte, C. D., Van Bockxmeer, F. M., & Taylor, R. R. (1998). The effect of homocysteine on DNA synthesis in cultured human vascular smooth muscle. Atherosclerosis, 136, 169–173.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, X., Li, H., Jin, H., Ebin, Z., Brodsky, S., & Goligorsky, M. S. (2000). Effects of homocysteine on endothelial nitric oxide production. American Journal of Physiology-Renal Physiology, 279, 671–678.Google Scholar
  47. 47.
    Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circulation Research, 87, 840–844.PubMedGoogle Scholar
  48. 48.
    Lang, D., Kredan, M. B., Moat, S. J., Hussain, S. A., Powell, C. A., Bellamy, M. F., et al. (2000). Homocysteine-induced inhibition of endothelium-dependent relaxation in rabbit aorta: Role for superoxide anions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 422–427.PubMedGoogle Scholar
  49. 49.
    MacCarthy, P. A., Grieve, D. J., Li, J. M., Dunster, C., Kelly, F. J., & Shah, A. M. (2001). Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: Role of reactive oxygen species and NADPH oxidase. Circulation, 104, 2967–2974.CrossRefPubMedGoogle Scholar
  50. 50.
    Massion, P., Feron, O., Dessy, C., & Balligand, J. (2003). Nitric oxide and cardiac function: Ten years after, and continuing. Circulation Research, 93, 388–398.CrossRefPubMedGoogle Scholar
  51. 51.
    Casadei, B. (2006). The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Experimental Physiology, 91, 943–955.CrossRefPubMedGoogle Scholar
  52. 52.
    Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology, 271, 1424–1437.Google Scholar
  53. 53.
    Joshi, R., Adhikari, S., Patro, B. S., Chattopadhyay, S., & Mukherjee, T. (2001). Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radical Biology and Medicine, 30, 1390–1399.CrossRefPubMedGoogle Scholar
  54. 54.
    Au-Yeung, K. K. W., Yip, J. C. W., Siow, Y. L., & Karmin, O. (2006). Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages. Canadian Journal of Physiology and Pharmacology, 84, 141–147.CrossRefPubMedGoogle Scholar
  55. 55.
    Das, U. N. (2003). Folic acid says NO to vascular diseases. Nutrition, 19, 686–692.CrossRefPubMedGoogle Scholar
  56. 56.
    Antoniades, C., Shirodaria, C., Warrick, N., Cai, S., de Bono, J., Lee, J., et al. (2006). 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: Effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation, 114, 1193–1201.CrossRefPubMedGoogle Scholar
  57. 57.
    Willett, W. C. (1985). Does low vitamin B6 intake increase the risk of coronary heart disease? “Vitamin B6: Its Role in Health and Disease”. Boston: Alan R. Liss, Inc.Google Scholar
  58. 58.
    Verhoef, P., Stampfer, M. J., Buring, J. E., Gaziano, J. M., Allen, R. H., Stabler, S. P., et al. (1996). Homocysteine metabolism and risk of myocardial infarction: Relationship with vitamins B6, B12 and folate. American Journal of Epidemiology, 143, 845–859.PubMedGoogle Scholar
  59. 59.
    Lugue, C. D., Vargas, R. H., Romo, E., Rios, A., & Escalante, B. (2006). The role of nitric oxide in the post-ischemic revascularization process. Pharmacology &Therapeutics, 112, 553–563.CrossRefGoogle Scholar
  60. 60.
    Bloor, J., Shukla, N., Smith, F. C., Angelini, G. D., & Jeremy, J. Y. (2010). Folic acid administration reduces neointimal thickening, augments neo-vasa vasorum formation and reduces oxidative stress in saphenous vein grafts from pigs used as a model of diabetes. Diabetologia, 53, 980–988.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Janaína Kolling
    • 1
    • 2
  • Emilene B. Scherer
    • 1
    • 2
  • Aline Andrea da Cunha
    • 1
    • 2
  • Maira Jaqueline da Cunha
    • 1
    • 2
  • Angela T. S. Wyse
    • 1
    • 2
  1. 1.Laboratório de Neuroproteção e Doenças MetabólicasICBS, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratório de Erros Inatos do Metabolismo, Departamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations