Cardiovascular Toxicology

, Volume 10, Issue 3, pp 166–173 | Cite as

Epigallocatechin-3-Gallate Protects Na+ Channels in Rat Ventricular Myocytes Against Sulfite

Article

Abstract

Sulfite (bisulfite/sulfite) can affect voltage-gated sodium (Na+) channels (VGSC) in a concentration-dependent manner in isolated rat ventricular myocytes. In this study, the effect of epigallocatechin-3-gallate (EGCG) on VGSC in isolated ventricular myocytes was studied. Ventricular myocytes were exposed to 10 μM bisulfite/sulfite for 10 min, and EGCG was then administered in different concentrations (10, 30, 50 μg ml−1). Decreased activity of superoxide dismutase, catalase (CAT) and glutathione peroxidase (GPx) was observed after bisulfite/sulfite exposure, with significant increase in Na+ currents (INa) and alterations in half-activation voltage and half-inactivation voltage. Intracellular reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl (OH·), and superoxide anion (O2·−) were increased. After EGCG treatment, activity of the aforementioned enzymes increased while the ROS level decreased. The effects progressed with increasing amounts of EGCG, up to a level similar to blank control at the dose of 50 μg ml−1 EGCG, EGCG also reduced the INa and reversed the alterations in half-activation voltage and half-inactivation voltage. In conclusion, EGCG could protect Na+ channels in rat ventricular myocytes against the oxidative damage induced by sulfite as a scavenger of the ROS.

Keywords

Epigallocatechin-3-gallate Antioxidant Sulfite Na+ channel Ventricular myocyte 

References

  1. 1.
    Nair, B., & Elmore, A. R. (2003). Cosmetic Ingredients Review Expert Panel. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite. International Journal of Toxicology, 22, 63–88.PubMedGoogle Scholar
  2. 2.
    Griffith, O. W. (1987). Mammalian sulfur amino acid metabolism: An overview. Methods in Enzymology, 143, 366–376.CrossRefPubMedGoogle Scholar
  3. 3.
    Kodavanti, U. P., Mebane, R., Ledbetter, A., Krantz, T., McGee, J., Jackson, M. C., et al. (2000). Variable pulmonary responses from exposure to concentrated ambient air particles in a rat model of bronchitis. Toxicological Sciences, 54, 441–451.CrossRefPubMedGoogle Scholar
  4. 4.
    Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New England Journal of Medicine, 343, 1742–1749.CrossRefPubMedGoogle Scholar
  5. 5.
    Pelletier, M., Savoie, A., & Girard, D. (2000). Activation of human neutrophils by the air pollutant sodium sulfite: (Na2SO3) comparison with immature promyelocytic HL-60 and DMSO-differentiated HL-60 cells reveals that Na2SO3 is a neutrophil but not a HL-60 cell agonist. Clinical Immunology, 96, 131–139.CrossRefPubMedGoogle Scholar
  6. 6.
    Ratthé, C., Pelletier, M., Roberge, C. J., & Girard, D. (2002). Activation of human neutrophils by the pollutant sodium sulfite: Effect on cytokine production, chemotaxis and cell surface expression of cell adhesion molecules. Clinical Immunology, 105, 169–175.CrossRefPubMedGoogle Scholar
  7. 7.
    Nie, A., & Meng, Z. (2005). Study of the interaction of sulfur dioxide derivative with cardiac sodium channel. Biochimica et Biophysica Acta, 1718, 67–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Koo, M. W. L., & Cho, C. H. (2004). Pharmacological effects of green tea on the gastrointestinal system. European Journal of Pharmacology, 500, 177–185.CrossRefPubMedGoogle Scholar
  9. 9.
    Vinson, J. A., Teufel, K., & Wu, N. (2004). Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms. Journal of Agriculture and Food Chemistry, 52, 3661–3665.CrossRefGoogle Scholar
  10. 10.
    Kavantzas, N., Chatziionnoiu, A., Yanni, A. E., Tsakayannis, D., Balafoutas, D., Agrogiannis, G., et al. (2006). Effect of green tea on angiogenesis and severity of atherosclerosis in cholesterol-fed rabbit. Vascular Pharmacology, 44, 461–463.CrossRefPubMedGoogle Scholar
  11. 11.
    Roghani, M., & Baluchnejadmojarad, T. (2009). Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: Underlying mechanisms. Vascular Pharmacology, 51, 84–89.CrossRefPubMedGoogle Scholar
  12. 12.
    Campbell, E. L., Chebib, M., & Johnston, G. A. R. (2004). The dietary flavonoids apigenin and (−)—epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochemical Pharmacology, 68, 1631–1638.CrossRefPubMedGoogle Scholar
  13. 13.
    Stewart, A. J., Mullen, W., & Crozier, A. (2005). On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Molecular Nutrition & Food Research, 49, 52–60.CrossRefGoogle Scholar
  14. 14.
    Fassina, G., Vene, R., Morini, M., Minghelli, S., Benelli, R., Noonan, D. M., et al. (2004). Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clinical Cancer Research, 10(14), 4865–4873.CrossRefPubMedGoogle Scholar
  15. 15.
    Stoclet, J. C., Chataigneau, T., Ndiaye, M., Oak, M. H., EI Bedoui, J., Chataigneau, M., et al. (2004). Vascular protection by dietary polyphenols. European Journal of Pharmacology, 500, 299–313.CrossRefPubMedGoogle Scholar
  16. 16.
    Ishida, A., Ookubo, K., & Ono, K. (1987). Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells Marchantia polymorpha L. Plant and Cell Physiology, 28, 723–726.Google Scholar
  17. 17.
    Subba rao, M. V. S. S. T., & Muralikrishna, G. (2001). Non-starchy polysaccharides and bound phenolic acids from native and malted finger millet (Eleusine coracana Indaf-15). Food Chemistry, 72, 187–912.CrossRefGoogle Scholar
  18. 18.
    Mutata, N., Mogi, C., Tobo, M., Nakakura, T., Sato, K., Tomura, H., et al. (2009). Inhibition of superoxide anion production by extracellular acidification in neutrophils. Cellular Immunology, 259, 21–26.CrossRefGoogle Scholar
  19. 19.
    Gunnison, A. F. (1981). Sulphite toxicity: A critical review of in vitro and in vivo data. Food and Cosmetics Toxicology, 19, 667–682.CrossRefPubMedGoogle Scholar
  20. 20.
    Ji, A. J., Savon, S. R., & Jacobsen, D. W. (1995). Determination of total serum sulfite by HPLC with fluorescence detection. Clinical Chemistry, 41, 897–903.PubMedGoogle Scholar
  21. 21.
    Deng, H. M., Yin, S. T., Yan, D., Tang, M. L., Li, C. C., Chen, J. T., et al. (2008). Effects of EGCG on voltage-gated sodium channels in primary cultures on rat hippocampal CA1 neurons. Toxicology, 252, 1–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Matés, J. M. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153, 83–104.CrossRefPubMedGoogle Scholar
  23. 23.
    Fornazier, R. F., Ferreira, R. R., Pereira, G. J. G., Molina, S. M. G., Smith, R., John, L., et al. (2002). Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes. Plant Cell, Tissue and Organ Culture, 71, 125–131.CrossRefGoogle Scholar
  24. 24.
    Berttl, A., & Slayman, C. L. (1990). Cation-selective channels in the vascular membrane of Saccharomyces: Dependence on calcium, redox state, and voltage. Proceedings of the National Academy of Sciences of the United States of America, 87, 7824–7828.CrossRefGoogle Scholar
  25. 25.
    Ruppersberg, J. P., Stocker, M., Pongs, O., Heinemann, S. H., Frank, R., & Koenen, M. (1991). Regulation of fast inactivation of cloned mammalian Ik(A) channels by cysteine oxidation. Nature, 352, 711–714.CrossRefPubMedGoogle Scholar
  26. 26.
    Darra, E., Shoji, K., Mariotto, S., & Suzuki, H. (2007). Protective effect of epigallocatechin-3-gallate on ischemia/reperfusion-induced injuries in the heart: STAT1 silencing flavonoid. Genes & Nutrition, 2, 307–310.CrossRefGoogle Scholar
  27. 27.
    Sabu, M. C., Smitham, K., & Kuttan, R. (2002). Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. Journal of Ethnopharmacology, 83, 109–116.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Environmental Science and ResourcesShanxi UniversityTaiyuanChina
  2. 2.Institute of Environmental Medicine and ToxicologyShanxi UniversityTaiyuanChina

Personalised recommendations