Cardiovascular Toxicology

, Volume 10, Issue 1, pp 27–36 | Cite as

Nanoparticle Inhalation Impairs Coronary Microvascular Reactivity via a Local Reactive Oxygen Species-Dependent Mechanism

  • A. J. LeBlanc
  • A. M. Moseley
  • B. T. Chen
  • D. Frazer
  • V. Castranova
  • T. R. NurkiewiczEmail author


We have shown that nanoparticle inhalation impairs endothelium-dependent vasodilation in coronary arterioles. It is unknown whether local reactive oxygen species (ROS) contribute to this effect. Rats were exposed to TiO2 nanoparticles via inhalation to produce a pulmonary deposition of 10 μg. Coronary arterioles were isolated from the left anterior descending artery distribution, and responses to acetylcholine, arachidonic acid, and U46619 were assessed. Contributions of nitric oxide synthase and prostaglandin were assessed via competitive inhibition with NG-Monomethyl-L-Arginine (L-NMMA) and indomethacin. Microvascular wall ROS were quantified via dihydroethidium (DHE) fluorescence. Coronary arterioles from rats exposed to nano-TiO2 exhibited an attenuated vasodilator response to ACh, and this coincided with a 45% increase in DHE fluorescence. Coincubation with 2,2,6,6-tetramethylpiperidine-N-oxyl and catalase ameliorated impairments in ACh-induced vasodilation from nanoparticle exposed rats. Incubation with either L-NMMA or indomethacin significantly attenuated ACh-induced vasodilation in sham-control rats, but had no effect in rats exposed to nano-TiO2. Arachidonic acid induced vasoconstriction in coronary arterioles from rats exposed to nano-TiO2, but dilated arterioles from sham-control rats. These results suggest that nanoparticle exposure significantly impairs endothelium-dependent vasoreactivity in coronary arterioles, and this may be due in large part to increases in microvascular ROS. Furthermore, altered prostanoid formation may also contribute to this dysfunction. Such disturbances in coronary microvascular function may contribute to the cardiac events associated with exposure to particles in this size range.


Microcirculation Nanoparticle Coronary Arteriole Vasodilation Titanium dioxide Inhalation Reactive oxygen species 



The authors thank Carroll McBride and Kimberly Wix for their expert technical assistance in this study, and Travis Knuckles, Ph.D., for his help in reviewing this manuscript. This work was supported by the National Institutes of Health/National Institute for Environmental Health Sciences [grant numbers R01-ES015022 and RC1 ES018274 (to TRN)].


The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.


  1. 1.
    LaDou, J. (2004). The asbestos cancer epidemic. Environmental Health Perspectives, 112, 285–290.PubMedGoogle Scholar
  2. 2.
    LeBlanc, A. J., Chen, B. T., Frazer, D., Castronova, V., & Nurkiewicz, T. R. (2009). Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. Journal of Toxicology and Environmental Health Part A, 72, 1576–1584.CrossRefPubMedGoogle Scholar
  3. 3.
    Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research, 102, 589–596.CrossRefPubMedGoogle Scholar
  4. 4.
    Garlick, P. B., Davies, M. J., Hearse, D. J., & Slater, T. F. (1987). Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research, 61, 757–760.PubMedGoogle Scholar
  5. 5.
    Ferrari, R., Ceconi, C., Curello, S., Guarnieri, C., Caldarera, C. M., Albertini, A., et al. (1985). Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defences against oxygen toxicity. Journal of Molecular and Cellular Cardiology, 17, 937–945.CrossRefPubMedGoogle Scholar
  6. 6.
    Grech, E. D., Dodd, N. J., Jackson, M. J., Morrison, W. L., Faragher, E. B., & Ramsdale, D. R. (1996). Evidence for free radical generation after primary percutaneous transluminal coronary angioplasty recanalization in acute myocardial infarction. American Journal of Cardiology, 77, 122–127.CrossRefPubMedGoogle Scholar
  7. 7.
    Dreher, K. L. (2004). Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 77, 3–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Cumpston, J. L., Chen, B. T., Frazer, D. G., et al. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Particle and Fibre Toxicology, 5, 1.CrossRefPubMedGoogle Scholar
  9. 9.
    Oberdorster, G. (1996). Significance of particle parameters in the evaluation of exposure-dose–response relationships of inhaled particles. Inhalation Toxicology, 8(Suppl), 73–89.PubMedGoogle Scholar
  10. 10.
    Weisfeldt, M. L., Wright, J. R., Shreiner, D. P., Lakatta, E., & Shock, N. W. (1971). Coronary flow and oxygen extraction in the perfused heart of senescent male rats. Journal of Applied Physiology, 30, 44–49.PubMedGoogle Scholar
  11. 11.
    Qi, X. L., Nguyen, T. L., Andries, L., Sys, S. U., & Rouleau, J. L. (1998). Vascular endothelial dysfunction contributes to myocardial depression in ischemia–reperfusion in the rat. Canadian Journal of Physiology and Pharmacology, 76, 35–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Cozzi, E., Hazarika, S., Stallings, H. W., III, Cascio, W. E., Devlin, R. B., Lust, R. M., et al. (2006). Ultrafine particulate matter exposure augments ischemia–reperfusion injury in mice. American Journal of Physiology. Heart and Circulatory Physiology, 291, H894–H903.CrossRefPubMedGoogle Scholar
  13. 13.
    Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111, 3481–3488.CrossRefPubMedGoogle Scholar
  14. 14.
    Bartoli, C. R., Wellenius, G. A., Coull, B. A., Akiyama, I., Diaz, E. A., Lawrence, J., et al. (2009). Concentrated ambient particles alter myocardial blood flow during acute ischemia in conscious canines. Environmental Health Perspectives, 117, 333–337.PubMedGoogle Scholar
  15. 15.
    Kim, C., Kim, J. Y., & Kim, J. H. (2008). Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Reports, 41, 555–559.PubMedGoogle Scholar
  16. 16.
    Wang, P., Chen, H., Qin, H., Sankarapandi, S., Becher, M. W., Wong, P. C., et al. (1998). Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proceedings of the National Academy of Sciences of the United States of America, 95, 4556–4560.CrossRefPubMedGoogle Scholar
  17. 17.
    Bondy, S. C., & Naderi, S. (1994). Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochemical Pharmacology, 48, 155–159.CrossRefPubMedGoogle Scholar
  18. 18.
    Rosenblum, W. I. (1987). Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles. Circulation Research, 61, 601–603.PubMedGoogle Scholar
  19. 19.
    Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131–185.PubMedGoogle Scholar
  20. 20.
    Saitoh, S., Zhang, C., Tune, J. D., Potter, B., Kiyooka, T., Rogers, P. A., et al. (2006). Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2614–2621.CrossRefPubMedGoogle Scholar
  21. 21.
    Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Stone, S., Chen, B. T., Frazer, D. G., et al. (2009). Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicological Sciences, 110, 191–203.CrossRefPubMedGoogle Scholar
  22. 22.
    Hurum, D. C., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2005). Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. The Journal of Physical Chemistry. B, 109, 977–980.CrossRefPubMedGoogle Scholar
  23. 23.
    Vasiliev, P. O., Faure, B., Ng, J. B., & Bergstrom, L. (2008). Colloidal aspects relating to direct incorporation of TiO2 nanoparticles into mesoporous spheres by an aerosol-assisted process. Journal of Colloid and Interface Science, 319, 144–151.CrossRefPubMedGoogle Scholar
  24. 24.
    Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.CrossRefGoogle Scholar
  25. 25.
    Sager, T. M., Kommineni, C., & Castranova, V. (2008). Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Particle and Fibre Toxicology, 5, 17.CrossRefPubMedGoogle Scholar
  26. 26.
    Chilian, W. M., Eastham, C. L., & Marcus, M. L. (1986). Microvascular distribution of coronary vascular resistance in beating left ventricle. American Journal of Physiology, 251, H779–H788.PubMedGoogle Scholar
  27. 27.
    Benov, L., Sztejnberg, L., & Fridovich, I. (1998). Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radical Biology and Medicine, 25, 826–831.CrossRefPubMedGoogle Scholar
  28. 28.
    Morgan, A. R., Evans, D. H., Lee, J. S., & Pulleyblank, D. E. (1979). Review: Ethidium fluorescence assay Part II. Enzymatic studies and DNA–protein interactions. Nucleic Acids Research, 7, 571–594.CrossRefPubMedGoogle Scholar
  29. 29.
    Nurkiewicz, T. R., & Boegehold, M. A. (2007). High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292, R1550–R1556.PubMedGoogle Scholar
  30. 30.
    Okayama, Y., Kuwahara, M., Suzuki, A. K., & Tsubone, H. (2006). Role of reactive oxygen species on diesel exhaust particle-induced cytotoxicity in rat cardiac myocytes. J Toxicol Environ Health A, 69, 1699–1710.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang, T., Chiang, E.T., Moreno-Vinasco, L., Lang, G.D., Pendyala, S., Samet, J.M., et al. (2009). Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. American Journal of Respiratory Cell and Molecular Biology. [Epub ahead of print] PMID: 19520919.Google Scholar
  32. 32.
    Li, Z., Hyseni, X., Carter, J. D., Soukup, J. M., Dailey, L. A., & Huang, Y. C. (2006). Pollutant particles enhanced H2O2 production from NAD(P)H oxidase and mitochondria in human pulmonary artery endothelial cells. American Journal of Physiology. Cell Physiology, 291, C357–C365.CrossRefPubMedGoogle Scholar
  33. 33.
    Ying, Z., Kampfrath, T., Thurston, G., Farrar, B., Lippmann, M., Wang, A., et al. (2009). Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicological Sciences, 111, 80–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Bai, Y., Suzuki, A. K., & Sagai, M. (2001). The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: Role of active oxygen species. Free Radical Biology and Medicine, 30, 555–562.CrossRefPubMedGoogle Scholar
  35. 35.
    Knuckles, T. L., Lund, A. K., Lucas, S. N., & Campen, M. J. (2008). Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS. Toxicology and Applied Pharmacology, 230, 346–351.CrossRefPubMedGoogle Scholar
  36. 36.
    Miller, M. R., Borthwick, S. J., Shaw, C. A., McLean, S. G., McClure, D., Mills, N. L., et al. (2009). Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environmental Health Perspectives, 117, 611–616.PubMedGoogle Scholar
  37. 37.
    Lund, A. K., Lucero, J., Lucas, S., Madden, M. C., McDonald, J. D., Seagrave, J. C., et al. (2009). Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 511–517.CrossRefPubMedGoogle Scholar
  38. 38.
    Courtois, A., Andujar, P., Ladeiro, Y., Baudrimont, I., Delannoy, E., Leblais, V., et al. (2008). Impairment of NO-dependent relaxation in intralobar pulmonary arteries: Comparison of urban particulate matter and manufactured nanoparticles. Environmental Health Perspectives, 116, 1294–1299.PubMedCrossRefGoogle Scholar
  39. 39.
    Cherng, T. W., Campen, M. J., Knuckles, T. L., Gonzalez Bosc, L., & Kanagy, N. L. (2009). Impairment of coronary endothelial cell ET(B) receptor function after short-term inhalation exposure to whole diesel emissions. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 297(3):R640–R647.Google Scholar
  40. 40.
    Sherratt, A. J., Culpepper, B. T., & Lubawy, W. C. (1988). Relative participation of the gas phase and total particulate matter in the imbalance in prostacyclin and thromboxane formation seen following chronic cigarette smoke exposure. Prostaglandins Leukotrienes and Essential Fatty Acids, 34, 15–18.CrossRefGoogle Scholar
  41. 41.
    Nurkiewicz, T. R., Porter, D. W., Barger, M., Castranova, V., & Boegehold, M. A. (2004). Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environmental Health Perspectives, 112, 1299–1306.PubMedCrossRefGoogle Scholar
  42. 42.
    Nurkiewicz, T. R., Porter, D. W., Barger, M., Millecchia, L., Rao, K. M., Marvar, P. J., et al. (2006). Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environmental Health Perspectives, 114, 412–419.PubMedGoogle Scholar
  43. 43.
    Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagopalan, S., & Silverman, F. (2002). Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation, 105, 1534–1536.CrossRefPubMedGoogle Scholar
  44. 44.
    Batalha, J. R., Saldiva, P. H., Clarke, R. W., Coull, B. A., Stearns, R. C., Lawrence, J., et al. (2002). Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environmental Health Perspectives, 110, 1191–1197.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. J. LeBlanc
    • 1
    • 2
  • A. M. Moseley
    • 4
  • B. T. Chen
    • 4
  • D. Frazer
    • 2
    • 4
  • V. Castranova
    • 4
  • T. R. Nurkiewicz
    • 1
    • 2
    • 3
    Email author
  1. 1.Center for Cardiovascular and Respiratory Sciences, 1 Medical Center Drive, Robert C. Byrd Health Sciences CenterWest Virginia University School of MedicineMorgantownUSA
  2. 2.Department of Physiology and PharmacologyWest Virginia University School of MedicineMorgantownUSA
  3. 3.Department of Neurobiology and AnatomyWest Virginia University School of MedicineMorgantownUSA
  4. 4.Pathology and Physiology Research Branch, Health Effects Laboratory DivisionNational Institute for Occupational Safety and HealthMorgantownUSA

Personalised recommendations