Cardiovascular Toxicology

, Volume 9, Issue 4, pp 201–210

Erythropoietin Promotes Deleterious Cardiovascular Effects and Mortality Risk in a Rat Model of Chronic Sports Doping

  • Nuno Piloto
  • Helena M. Teixeira
  • Edite Teixeira-Lemos
  • Belmiro Parada
  • Patrícia Garrido
  • José Sereno
  • Rui Pinto
  • Lina Carvalho
  • Elísio Costa
  • Luís Belo
  • Alice Santos-Silva
  • Frederico Teixeira
  • Flávio Reis
Original Research

Abstract

Athletes who abuse recombinant human erythropoietin (rhEPO) consider only the benefit to performance and usually ignore the potential short and long-term liabilities. Elevated haematocrit and dehydratation associated with intense exercise may reveal undetected cardiovascular risk, but the mechanisms underlying it remain to be fully explained. This study aimed to evaluate the cardiovascular effects of rhEPO in rats under chronic aerobic exercise. A ten week protocol was performed in four male Wistar rat groups: control—sedentary; rhEPO—50 IU kg−1, 3 times/wk; exercised (EX)—swimming for 1 h, 3 times/wk; EX + rhEPO. One rat of the EX + rhEPO group suffered a sudden death episode during the week 8. rhEPO in trained rats promoted erythrocyte count increase, hypertension, heart hypertrophy, sympathetic and serotonergic overactivation. The suddenly died rat’s tissues presented brain with vascular congestion; left ventricular hypertrophy, together with a “cardiac-liver”, suggesting the hypothesis of heart failure as cause of sudden death. In conclusion, rhEPO doping in rats under chronic exercise promotes not only the expected RBC count increment, suggesting hyperviscosity, but also other serious deleterious cardiovascular and thromboembolic modifications, including mortality risk, which might be known and assumed by all sports authorities, including athletes and their physicians.

Keywords

rhEPO Doping Chronic aerobic exercise Cardiovascular and mortality risk 

References

  1. 1.
    Lacombe, C., & Mayeux, P. (2006). Biology of erythropoietin. Haematologica, 83, 724–732.Google Scholar
  2. 2.
    Fliser, D., Bahlmann, F. H., & Haller, H. (2006). EPO: Renoprotetion beyond anemia correction. Pediatric Nephrology, 21, 1785–1789.CrossRefPubMedGoogle Scholar
  3. 3.
    Elliott, S. (2008). Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. British Journal of Pharmacology, 154, 529–541.CrossRefPubMedGoogle Scholar
  4. 4.
    Lasne, F., & de Ceaurriz, J. (2000). Recombinant human erythropoietin in urine. Nature, 405, 635.CrossRefPubMedGoogle Scholar
  5. 5.
    Robinson, N., Mangin, P., & Saugy, M. (2003). Erythropoietin abuse in sports. Sysmex Journal International, 13, 75–77.Google Scholar
  6. 6.
    Bento, R., Damasceno, L., & Neto, F. (2003). Eritropoietina recombinante humana no esporte: uma revisão. Revista Brasileira de Medicina do Esporte, 9, 169–180.CrossRefGoogle Scholar
  7. 7.
    Stohlawetz, P. J., Dzirlo, L., Hergovich, N., Lackner, E., Mensik, C., Eichler, H. G., et al. (2000). Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood, 95, 2983–2999.PubMedGoogle Scholar
  8. 8.
    Gareau, R., Audran, M., Baynes, R. D., Flowers, C. H., Duvallet, A., Senécal, L., et al. (1996). Erythropoietin abuse in athletes. Nature, 380, 113.CrossRefPubMedGoogle Scholar
  9. 9.
    Thein, L. A., Thein, J. M., & Landry, G. L. (1995). Ergogenic aids. Physical Therapy, 75, 426–439.PubMedGoogle Scholar
  10. 10.
    Adamson, J. W., & Vapnek, D. (1991). Recombinant human erythropoietin to improve athletic performance. The New England Journal of Medicine, 324, 698–699.PubMedCrossRefGoogle Scholar
  11. 11.
    Reis, F., Rocha, L., Ponte, L., Alcobia, T., Almeida, L., Costa-Almeida, C., et al. (2005). Effect of preventive and regressive isosorbide 5-mononitrate treatment on catecholamine levels in plasma, platelets, adrenals, left ventricle and aorta in cyclosporin A-induced hypertensive rats. Life Science, 77, 2514–2528.CrossRefGoogle Scholar
  12. 12.
    Estepa, V., Ródenas, S., & Martín, M. C. (2001). Optimización de un método para la determinación de la peroxidación lipídica en suero humano. Anales de la Real Academia de Farmacia, 67, 1–17.Google Scholar
  13. 13.
    Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP assay. Analytical Biochemistry, 239, 70–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Cruz, A. (2006). Resistência aeróbia e eritropoietina. Goiânia, 33, 553–572.Google Scholar
  15. 15.
    Cazzola, M. (2002). A global strategy for prevention and detection of blood doping with erythropoietin and related drugs. Haematologica, 85, 561–563.Google Scholar
  16. 16.
    Berglund, B., Birgegard, G., & Hemmingsson, P. (1988). Serum erythropoietin in cross country skiers. Medicine and Science in Sports and Exercise, 20, 208–209.CrossRefPubMedGoogle Scholar
  17. 17.
    Schwandt, H. J., Heyduck, B., Gunga, H. C., & Röcker, L. (1991). Influence of prolonged physical exercise on the erythropoietin concentration in blood. European Journal of Applied Physiology and Occupational Physiology, 63, 463–466.CrossRefPubMedGoogle Scholar
  18. 18.
    Gauthier, J. (2001). Effets cardiovasculaires du dopage. Annales de Cardiologie et d’Angeiologie, 50293, 8.Google Scholar
  19. 19.
    Torralbo, A., Herrerro, J. A., Portolés, J., Fontanellas, A., & Barrientos, A. (1995). Activation of the sympathetic nervous system in hemodialyzed patients treated with erythropoietin. Nephron, 69, 350.CrossRefPubMedGoogle Scholar
  20. 20.
    Maiese, K., Li, F., & Chong, Z. Z. (2005). New avenues of exploration for erythropoietin. JAMA, 293, 90–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Riksen, N. P., Hausenloy, D. J., & Yellon, D. M. (2008). Erythropoietin: Ready for prime-time cardioprotection. TiPS, 29, 258–267.PubMedGoogle Scholar
  22. 22.
    Latini, R., Brines, M., & Fiordaliso, F. (2008). Do non-hemopoietic effects of erythropoietin play a beneficial role in heart failure? Heart Failure Reviews, 13, 415–423.CrossRefPubMedGoogle Scholar
  23. 23.
    Parsa, C. J., Matsumoto, A., Kim, J., Riel, R. U., Pascal, L. S., Walton, G. B., et al. (2003). A novel protective effect of erythropoietin in the infracted heart. The Journal of Clinical Investigation, 112, 999–1007.PubMedGoogle Scholar
  24. 24.
    Lipsic, E., Schoemaker, R. G., van der Meer, P., Voors, A. A., van Veldhuisen, D. J., & van Gilst, W. H. (2006). Protective effects of erythropoietin in cardiac ischemia. Journal of the American College of Cardiology, 48, 2161–2167.CrossRefPubMedGoogle Scholar
  25. 25.
    Tao, W., Wen, F., Zhang, H., & Liu, G. (2009). The signal transduction mediated by erythropoietin and proinflammatory cytokines in the JAK/STAT pathway in the children with cerebral plasy. Brain and Development, 31, 200–207.CrossRefPubMedGoogle Scholar
  26. 26.
    Katavenin, P., Tungsanga, K., Eiam-Ong, S., & Nagaku, M. (2007). Antioxidative effects of erythropoietin. Kidney International, 72, S10–S15.CrossRefGoogle Scholar
  27. 27.
    Maiese, K., Chong, Z. Z., Hou, J., & Shang, Y. C. (2008). Erythropoietin and oxidative stress. Current Neurovascular Research, 5, 125–142.CrossRefPubMedGoogle Scholar
  28. 28.
    Ghezzi, P., & Brines, M. (2004). Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death and Differentiation, 11, S37–S44.CrossRefPubMedGoogle Scholar
  29. 29.
    Manolis, A. S., Tzeism, S., Triantafyllou, K., Michaelidis, J., Pyrros, I., Sakellaris, N., et al. (2005). Erythropoietin in heart failure and other cardiovascular diseases: Hematopoietic and pleiotropic effects. Current Drug Targets—Cardiovascular and Haematological Disorders, 5, 355–375.CrossRefPubMedGoogle Scholar
  30. 30.
    Regidor, D. L., Kopple, J. D., Kovesdy, C. P., Kilpatrick, R. D., McAllister, C. J., Aronovitz, J., et al. (2006). Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. Journal of the American Society of Nephrology, 17, 1181–1191.CrossRefPubMedGoogle Scholar
  31. 31.
    Wagner, K. F., Katschinski, D. M., Hasegawa, J., Schumacher, D., Meller, B., Gembruch, U., et al. (2001). Chronic inborn erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin. Blood, 97, 536–542.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Nuno Piloto
    • 1
  • Helena M. Teixeira
    • 2
  • Edite Teixeira-Lemos
    • 1
  • Belmiro Parada
    • 1
  • Patrícia Garrido
    • 1
  • José Sereno
    • 1
  • Rui Pinto
    • 3
  • Lina Carvalho
    • 4
  • Elísio Costa
    • 5
    • 6
  • Luís Belo
    • 6
    • 7
  • Alice Santos-Silva
    • 6
    • 7
  • Frederico Teixeira
    • 1
    • 6
  • Flávio Reis
    • 1
    • 6
  1. 1.Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Sub-Unit 1 (Polo III)Coimbra UniversityCoimbraPortugal
  2. 2.Forensic Toxicology LaboratoryNorth Branch of the National Institute of Legal MedicinePortoPortugal
  3. 3.Pharmacology & Pharmacotoxicology Unit, Pharmacy SchoolLisbon UniversityLisbonPortugal
  4. 4.Institute of Anatomic Patology Medicine FacultyCoimbra UniversityCoimbraPortugal
  5. 5.Institute of Health SciencesUniversity CatholicPortoPortugal
  6. 6.Institute for Molecular and Cellular BiologyPorto UniversityPortoPortugal
  7. 7.Department of Biochemistry, Pharmacy FacultyPorto UniversityPortoPortugal

Personalised recommendations