Cardiovascular Toxicology

, Volume 9, Issue 4, pp 169–176 | Cite as

Arsenic Exposure and Cardiovascular Disorders: An Overview

Article

Abstract

The incidence of arsenic toxicity has been observed in various countries including Taiwan, Bangladesh, India, Argentina, Australia, Chile, China, Hungary, Peru, Thailand, Mexico and United States of America. Arsenic is a ubiquitous element present in drinking water, and its exposure is associated with various cardiovascular disorders. Arsenic exposure plays a key role in the pathogenesis of vascular endothelial dysfunction as it inactivates endothelial nitric oxide synthase, leading to reduction in the generation and bioavailability of nitric oxide. In addition, the chronic arsenic exposure induces high oxidative stress, which may affect the structure and function of cardiovascular system. Further, the arsenic exposure has been noted to induce atherosclerosis by increasing the platelet aggregation and reducing fibrinolysis. Moreover, arsenic exposure may cause arrhythmia by increasing the QT interval and accelerating the cellular calcium overload. The chronic exposure to arsenic upregulates the expression of tumor necrosis factor-α, interleukin-1, vascular cell adhesion molecule and vascular endothelial growth factor to induce cardiovascular pathogenesis. The present review critically discussed the detrimental role of arsenic in the cardiovascular system.

Keywords

Arsenic Endothelial dysfunction Cardiovascular disorders Therapeutic interventions 

References

  1. 1.
    Nuntharatanapong, N., Chen, K., Sinhaseni, P., & Keaney, J. F. (2005). EGF receptor-dependent JNK activation is involved in arsenite-induced p21Cip1/Waf1 upregulation and endothelial apoptosis. American Journal of Physiology, Heart and Circulatory Physiology, 289(1), H99–H107.CrossRefGoogle Scholar
  2. 2.
    Yousef, M. I., El-Demerdash, F. M., & Radwan, F. M. E. (2008). Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food and Chemical Toxicology, 46(11), 3506–3511.CrossRefPubMedGoogle Scholar
  3. 3.
    Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1), 201–235.CrossRefPubMedGoogle Scholar
  4. 4.
    Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154(1), 29–43.CrossRefGoogle Scholar
  5. 5.
    Tseng, C. H. (2008). Cardiovascular disease in arsenic-exposed subjects living in the arseniasis-hyperendemic areas in Taiwan. Atherosclerosis, 199(1), 12–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Ghosh, P., Roy, C., Das, N. K., & Sengupta, S. R. (2008). Epidemiology and prevention of chronic arsenicosis: An Indian perspective. Indian Journal of Dermatology, Venereology and Leprology, 74(6), 582–593.CrossRefPubMedGoogle Scholar
  7. 7.
    Chakraborti, D., Das, B., Rahman, M. M., Chowdhury, U. K., Biswas, B., Goswami, A. B., et al. (2009). Status of groundwater arsenic contamination in the state of West Bengal, India: A 20-year study report. Molecular Nutrition & Food Research, 53(5), 542–551.CrossRefGoogle Scholar
  8. 8.
    Andrew, A. S., Jewell, D. A., Mason, R. A., Whitfield, M. L., Moore, J. H., & Karagas, M. R. (2008). Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environmental Health Perspectives, 116(4), 524–531.PubMedGoogle Scholar
  9. 9.
    Lee, M. Y., Jung, B. I., Chung, S. M., Bae, O. N., Lee, J. Y., Park, J. D., et al. (2003). Arsenic-induced dysfunction in relaxation of blood vessels. Environmental Health Perspectives, 111(4), 513–517.PubMedGoogle Scholar
  10. 10.
    Kwok, R. K. (2007). A review and rationale for studying the cardiovascular effects of drinking water arsenic in women of reproductive age. Toxicology and Applied Pharmacology, 222(3), 344–350.CrossRefPubMedGoogle Scholar
  11. 11.
    Balakumar, P., Koladiya, R. U., Ramasamy, S., Rathinavel, A., & Singh, M. (2008). Pharmacological interventions to prevent vascular endothelial dysfunction: Future directions. Journal of Health Science, 54(1), 1–16.CrossRefGoogle Scholar
  12. 12.
    Quyyumi, A. A. (1998). Endothelial function in health and disease: New insights into the genesis of cardiovascular disease. The American Journal of Medicine, 105(1), 32S–39S.CrossRefPubMedGoogle Scholar
  13. 13.
    Schalkwijk, C. G., & Stehouwer, C. D. A. (2005). Vascular complications in diabetes mellitus: The role of endothelial dysfunction. Clinical Sciences, 109(2), 143–159.CrossRefGoogle Scholar
  14. 14.
    Balakumar, P., Sharma, R., & Singh, M. (2008). Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in rats. Pharmacological Research, 58(5–6), 356–363.CrossRefPubMedGoogle Scholar
  15. 15.
    Balakumar, P., Chakkarwar, V. A., Krishan, P., & Singh, M. (2009). Vascular endothelial dysfunction: A tug of war in diabetic nephropathy? Biomedicine and Pharmacotherapy, 63(3), 171–179.CrossRefGoogle Scholar
  16. 16.
    Grabczewska, Z., Thews, M., Goralczyk, K., & Kubica, J. (2007). Endothelial function in patients with chest pain and normal coronary angiograms. Kardiologia Polska, 65(10), 1199–1206.PubMedGoogle Scholar
  17. 17.
    Desjardins, F., & Balligand, J. L. (2006). Nitric oxide-dependent endothelial function and cardiovascular disease. Acta Clinica Belgica, 61(6), 326–334.PubMedGoogle Scholar
  18. 18.
    Kawashima, S. (2004). The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium, 11(2), 99–107.CrossRefPubMedGoogle Scholar
  19. 19.
    Kawashima, S., & Yokoyama, M. (2004). Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(6), 998–1005.CrossRefPubMedGoogle Scholar
  20. 20.
    Balakumar, P., Kaur, T., & Singh, M. (2008). Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology, 245(1–2), 49–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circulation Research, 87(10), 840–844.PubMedGoogle Scholar
  22. 22.
    Balakumar, P., Jindal, S., Shah, D. I., & Singh, M. (2007). Experimental models for vascular endothelial dysfunction. Trends in Medical Research, 2(1), 12–20.CrossRefGoogle Scholar
  23. 23.
    Balakumar, P., & Kaur, J. (2009). Is nicotine a key player or spectator in the induction and progression of cardiovascular disorders? Pharmacological Research, 60(5), 361–368.CrossRefPubMedGoogle Scholar
  24. 24.
    Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23), III27–III32.PubMedGoogle Scholar
  25. 25.
    Savoia, C., & Schiffrin, E. L. (2007). Vascular inflammation in hypertension and diabetes: Molecular mechanisms and therapeutic interventions. Clinical Science, 112(7), 375–384.CrossRefPubMedGoogle Scholar
  26. 26.
    Balakumar, P., Chakkarwar, V. A., & Singh, M. (2009). Ameliorative effect of combination of benfotiamine and fenofibrate in diabetes-induced endothelial dysfunction and nephropathy in the rat. Molecular and Cellular Biochemistry, 320(1–2), 149–162.CrossRefPubMedGoogle Scholar
  27. 27.
    Tsou, T. C., Yeh, S. C., Tsai, E. M., Tsai, F. Y., Chao, H. R., & Chang, L. W. (2005). Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1. Toxicology and Applied Pharmacology, 209(1), 10–18.CrossRefPubMedGoogle Scholar
  28. 28.
    Smith, K. R., Klei, L. R., & Barchowsky, A. (2001). Arsenite stimulates plasma membrane NADPH oxidase in vascular endothelial cells. American Journal Physiology Lung Cellular and Molecular Physiology, 280(3), 442–449.Google Scholar
  29. 29.
    Bunderson, M., Coffin, J. D., & Beall, H. D. (2002). Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: Possible role in atherosclerosis. Toxicology and Applied Pharmacology, 184(1), 11–18.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen, S. C., Tsai, M. H., Wang, H. J., Yu, H. S., & Chang, L. W. (2007). Involvement of substance P and neurogenic inflammation in arsenic-induced early vascular dysfunction. Toxicological Sciences, 95(1), 82–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Bae, O. N., Lim, K. M., Noh, J. Y., Chung, S. M., Kim, H., Lee, C. R., et al. (2007). Arsenite-enhanced procoagulant activity through phosphatidylserine exposure in platelets. Chemical Research in Toxicology, 20(12), 1760–1768.CrossRefPubMedGoogle Scholar
  32. 32.
    Tsai, S. H., Hsieha, M. S., Chenb, L., Liang, Y. C., Linb, J. K., & Lin, S. Y. (2001). Suppression of fas ligand expression on endothelial cells by arsenite through reactive oxygen species. Toxicology, 123(1), 11–19.Google Scholar
  33. 33.
    Balakumar, P., Jindal, S., & Singh, M. (2007). Novel use of uric acid and sodium arsenite to induce vascular endothelial dysfunction in rats. Journal of Pharmacology and Toxicology, 2(5), 437–446.CrossRefGoogle Scholar
  34. 34.
    Jindal, S., Singh, M., & Balakumar, P. (2008). Effect of bis (maltolato) oxovanadium in uric acid and sodium arsenite-induced vascular endothelial dysfunction in rats. International Journal of Cardiology, 128(3), 383–391.CrossRefPubMedGoogle Scholar
  35. 35.
    Tseng, C. H. (2002). An overview on peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Angiology, 53(5), 529–537.CrossRefPubMedGoogle Scholar
  36. 36.
    Yang, H. T., Chou, H. J., Han, B. C., & Huang, S. Y. (2007). Lifelong inorganic arsenic compounds consumption affected blood pressure in rats. Food and Chemical Toxicology, 45(12), 2479–2487.CrossRefPubMedGoogle Scholar
  37. 37.
    Germolec, D. R., Spalding, J., Boorman, G. A., Wilmer, J. L., Yoshida, T., Simeonova, P. P., et al. (1997). Arsenic can mediate skin neoplasia by chronic stimulation of keratinocyte-derived growth factors. Mutation Research, 386(3), 209–218.CrossRefPubMedGoogle Scholar
  38. 38.
    Kitchin, K. T. (2001). Recent advances in arsenic carcinogenesis: Modes of action, animal model systems, and methylated arsenic metabolites. Toxicology and Applied Pharmacology, 172(3), 249–261.CrossRefPubMedGoogle Scholar
  39. 39.
    Sun, X., Pi, J., Liu, W., Hudson, L. G., Liu, K. J., & Feng, C. (2009). Induction of heme oxygenase 1 by arsenite inhibits cytokine-induced monocyte adhesion to human endothelial cells. Toxicology and Applied Pharmacology, 236(2), 202–209.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee, P. C., Ho, I. C., & Lee, T. C. (2005). Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicological Sciences, 85(1), 541–550.CrossRefPubMedGoogle Scholar
  41. 41.
    Yeh, J. Y., Cheng, L. C., Ou, B. R., Whanger, P. D., & Chang, L. W. (2002). Differential influences of various arsenic compounds on glutathione redox status and antioxidative enzymes in porcine endothelial cells. Cellular and Molecular Life Sciences, 59(11), 1972–1982.CrossRefPubMedGoogle Scholar
  42. 42.
    Barchowsky, A., Dudeka, E. J., Treadwellb, M. D., & Wetterhahn, K. E. (1996). Arsenic induces oxidant stress and NF-KB activation in cultured aortic endothelial cells. Free Radical Biology and Medicine, 21(6), 783–790.CrossRefPubMedGoogle Scholar
  43. 43.
    Simeonova, P. P., Wang, S., Toriuma, W., Kommineni, V., Matheson, J., & Unimye, N. (2000). Arsenic mediates cell proliferation and gene expression in the bladder epithelium: Association with activating protein-1 transactivation. Cancer Research, 60(13), 3445–3453.PubMedGoogle Scholar
  44. 44.
    Simeonova, P. P., Hulderman, T., Harki, D., & Luster, M. I. (2003). Arsenic exposure accelerates atherogenesis in apolipoprotein E−/− mice. Environmental Health Perspectives, 111(14), 1744–1748.PubMedGoogle Scholar
  45. 45.
    Jiang, S. J., Lin, T. M., Wu, H. L., Han, H. S., & Shi, G. Y. (2002). Decrease of fibrinolytic activity in human endothelial cells by arsenite. Thrombosis Research, 105(1), 55–62.CrossRefPubMedGoogle Scholar
  46. 46.
    Fujiwara, Y., Nasake, Y., & Kaji, T. (2005). Sodium arsenite inhibits proteoglycan synthesis by vascular endothelial cells in culture. Journal of Health Sciences, 51(4), 461–468.CrossRefGoogle Scholar
  47. 47.
    Lee, M. Y., Bae, O. N., Chung, S. M., Kang, K. T., Lee, J. Y., & Chung, J. H. (2002). Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: A contributing factor to cardiovascular disease. Toxicology and Applied Pharmacology, 179(2), 83–88.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu, H. L., Yang, W. H., Wang, M. Y., & Shi, G. Y. (1993). Impaired fibrinolysis in patients with blackfoot disease. Thrombosis Research, 72(3), 211–218.CrossRefPubMedGoogle Scholar
  49. 49.
    Kwok, R. K., Mendola, P., Liu, Z. Y., Savitz, D. A., Heiss, G., Ling, H. L., et al. (2007). Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China. Toxicology and Applied Pharmacology, 222(3), 337–343.CrossRefPubMedGoogle Scholar
  50. 50.
    Lee, M. Y., Lee, Y. H., Lim, K. M., Chung, S. M., Bae, O. N., Kim, H., et al. (2005). Inorganic arsenite potentiates vasoconstriction through calcium sensitization in vascular smooth muscle. Environmental Health Perspectives, 113(10), 1330–1335.PubMedGoogle Scholar
  51. 51.
    Loyke, H. F. (2002). Effects of elements in human blood pressure control. Biological Trace Element Research, 85(3), 193–209.CrossRefPubMedGoogle Scholar
  52. 52.
    Carmignani, M., Boscolo, P., & Iannacco, A. (1983). Effects of chronic exposure to arsenate on the cardiovascular function of rats. British Journal of Industrial Medicine, 40(3), 280–284.PubMedGoogle Scholar
  53. 53.
    Carmignani, M., Boscolo, P., & Castellino, N. (1985). Metabolic fate and cardiovascular effects of arsenic in rats and rabbits chronically exposed to trivalent and pentavalent arsenic. Archives of Toxicology Supplement, 8, 452–455.Google Scholar
  54. 54.
    Park, T.-G., Seong, Y. J., Suk, K. H., Ha, J.-H., & Kim, I. K. (2005). Enhanced contractility of vascular smooth muscle after brief exposure to arsenate. Environmental Toxicology and Pharmacology, 19(2), 305–311.CrossRefGoogle Scholar
  55. 55.
    Soucy, N. V., Mayka, D., Klei, L. R., Nemec, A. A., Bauer, J. A., & Barchowsk, A. (2005). Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovascular Toxicology, 5(1), 29–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Li, D., Lu, C., Wang, J., Hu, W., Cao, Z., Sun, D., et al. (2009). Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquatic Toxicology, 91(3), 229–237.CrossRefPubMedGoogle Scholar
  57. 57.
    Ficker, E., Kuryshev, Y. A., Dennis, A. T., Obejero-Paz, C., Wang, L., Hawryluk, P., et al. (2004). Mechanisms of arsenic-induced prolongation of cardiac repolarization. Molecular Pharmacology, 66(1), 33–44.CrossRefPubMedGoogle Scholar
  58. 58.
    Chen, C. J., Chiou, H. Y., Chiang, M. H., Lin, L. J., & Tai, T. Y. (1996). Dose–response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(4), 504–510.PubMedGoogle Scholar
  59. 59.
    Tseng, C. H., Chong, C. K., Tseng, C. P., Hsueh, Y. M., Chiou, H. Y., Tseng, C. C., et al. (2003). Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicology Letters, 137(1–2), 15–21.CrossRefPubMedGoogle Scholar
  60. 60.
    Benowitz, N. L. (1992). Cardiotoxicity in the workplace. Occupational Medicine, 7(3), 465–478.PubMedGoogle Scholar
  61. 61.
    Goldsmith, S., & From, A. H. (1980). Arsenic-induced atypical ventricular tachycardia. The New England Journal of Medicine, 303(19), 1096–1098.PubMedCrossRefGoogle Scholar
  62. 62.
    Manna, P., Sinha, M., & Sil, P. C. (2008). Arsenic-induced oxidative myocardial injury: Protective role of arjunolic acid. Archives of Toxicology, 82(3), 137–149.CrossRefPubMedGoogle Scholar
  63. 63.
    Li, W. F., Sun, C. W., Cheng, T. J., Chang, K. H., Chen, C. J., & Wang, S. L. (2009). Risk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in southwestern Taiwan. Toxicology and Applied Pharmacology, 236(2), 246–253.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang, J. P., Wang, S. L., Lin, Q., Zhang, L., Huang, D., & Ng, J. C. (2009). Association of arsenic and kidney dysfunction in people with diabetes and validation of its effects in rats. Environmental International, 35(3), 507–511.CrossRefGoogle Scholar
  65. 65.
    Liu, J., Liu, Y., Habeebu, S. M., Waalkes, M. P., & Klaassen, C. D. (2000). Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology, 147(3), 157–166.CrossRefPubMedGoogle Scholar
  66. 66.
    Navas-Acien, A., Silbergeld, E. K., Pastor-Barriuso, R., & Guallar, E. (2008). Arsenic exposure and prevalence of type 2 diabetes in US adults. The Journal of American Medical Association, 300(7), 814–822.CrossRefGoogle Scholar
  67. 67.
    Rahman, M., Tondel, M., Ahmad, S. A., & Axelson, O. (1998). Diabetes mellitus associated with arsenic exposure in Bangladesh. American Journal of Epidemiology, 148(2), 198–203.PubMedGoogle Scholar
  68. 68.
    Tseng, C. H., Tai, T. Y., Chong, C. K., Tseng, C. P., Lai, M. S., Lin, B. J., et al. (2000). Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: A cohort study in arseniasis-hyperendemic villages in Taiwan. Environmental Health Perspectives, 108(9), 847–851.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang, S. L., Chiou, J. M., Chen, C. J., Tseng, C. H., Chou, W. L., Wang, C. C., et al. (2003). Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environmental Health Perspectives, 111(2), 155–159.PubMedGoogle Scholar
  70. 70.
    Izquierdo-Vega, J. A., Soto, C. A., Sanchez-Pena, L. C., De Vizcaya-Ruiz, A., & Del Razo, L. M. (2006). Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicology Letters, 160(2), 135–142.CrossRefPubMedGoogle Scholar
  71. 71.
    Diaz-Villasenor, A., Burns, A. L., Salazar, A. M., Sordo, M., Hiriart, M., Cebrian, M. E., et al. (2008). Arsenite reduces insulin secretion in rat pancreatic β-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25. Toxicology and Applied Pharmacology, 231(3), 291–299.CrossRefPubMedGoogle Scholar
  72. 72.
    Buchet, J. P., Heilier, J. F., Bernard, A., Lison, D., Jin, T., Wu, X., et al. (2003). Urinary protein excretion in humans exposed to arsenic and cadmium. International Archives of Occupational and Environmental Health, 76(2), 111–120.PubMedGoogle Scholar
  73. 73.
    Hong, F., Jin, T., & Zhang, A. (2004). Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population. BioMetals, 17(5), 573–580.CrossRefPubMedGoogle Scholar
  74. 74.
    Nordberg, G. F., Jin, T., Hong, F., Zhang, A., Buchet, J. P., & Bernard, A. (2005). Biomarkers of cadmium and arsenic interactions. Toxicology and Applied Pharmacology, 206(2), 191–197.CrossRefPubMedGoogle Scholar
  75. 75.
    Banerjee, P., Bhattacharyya, S. S., Bhattacharjee, N., Pathak, S., Boujedaini, N., Belon, P., et al. (2009). Ascorbic acid combats arsenic-induced oxidative stress in mice liver. Ecotoxicology and Environmental Safety, 72(2), 639–649.CrossRefPubMedGoogle Scholar
  76. 76.
    Ramanathan, K., Balakumar, B. S., & Panneerselvam, C. (2002). Effects of ascorbic acid and alpha-tocopherol on arsenic-induced oxidative stress. Human and Experimental Toxicology, 21(12), 675–680.CrossRefPubMedGoogle Scholar
  77. 77.
    Mukherjee, S., Das, D., Mukherjee, M., Das, A. S., & Mitra, C. (2006). Synergistic effect of folic acid and vitamin B12 in ameliorating arsenic-induced oxidative damage in pancreatic tissue of rat. The Journal of Nutritional Biochemistry, 17(5), 319–327.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang, J. H., Redmond, H. P., Watson, R. W., Condron, C., & Bouchier-Hayes, D. (1996). The beneficial effect of taurine on the prevention of human endothelial cell death. Shock, 6(5), 331–338.PubMedCrossRefGoogle Scholar
  79. 79.
    Sinha, M., Manna, P., & Sil, P. C. (2008). Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology, 15(3), 147–156.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhao, X. Y., Li, G. Y., Liu, Y., Chai, L. M., Chen, J. X., Zhang, Y., et al. (2008). Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. British Journal of Pharmacology, 154(1), 105–113.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Cardiovascular Pharmacology DivisionISF College of PharmacyMogaIndia

Personalised recommendations