Cardiovascular Toxicology

, Volume 8, Issue 4, pp 181–193

Hypertension, Cardiac Hypertrophy, and Impaired Vascular Relaxation Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin are Associated with Increased Superoxide

  • Phillip G. Kopf
  • Janice K. Huwe
  • Mary K. Walker
Original Research

Abstract

The mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the incidence of human cardiovascular disease are not known. We investigated the degree to which cardiovascular disease develops in mice following subchronic TCDD exposure. Adult male C57BL/6 mice were dosed with vehicle or 300 ng TCDD/kg by oral gavage three times per week for 60 days. Blood pressure was recorded by radiotelemetry and aortic endothelial function was assessed by acetylcholine-induced vasorelaxation. Mean arterial pressure of TCDD-exposed mice was increased significantly by day 4 and between days 7–10, 25–35, and 45–60 with two periods of normalization on days 11–24 and days 36–39. Consistent with a prolonged period of systemic hypertension, heart weight was increased and was associated with concentric left ventricular hypertrophy. Significant increases in superoxide production also were observed in the kidney, heart, and aorta of TCDD-exposed mice. Furthermore, increased aortic superoxide resulted in endothelial dysfunction as demonstrated by significant impairment of acetylcholine-induced vasorelaxation in TCDD-exposed mice, which was restored by tempol, a superoxide dismutase (SOD) mimetic. Our model is the first to definitely demonstrate that sustained AhR activation by TCDD increases blood pressure and induces cardiac hypertrophy, which may be mediated, in part, by increased superoxide.

Keywords

Aryl hydrocarbon receptor Cardiac hypertrophy Endothelial dysfunction Hypertension Superoxide TCDD 

References

  1. 1.
    ATSDR. (1998). Toxicological profile for chlorinated dibenzo-p-dioxins. Atlanta: Agency for Toxic Substance and Disease Registry.Google Scholar
  2. 2.
    Swanson, H. I., & Bradfield, C. A. (1993). The AH-receptor: Genetics, structure and function. Pharmacogenetics, 3, 213–230. doi:10.1097/00008571-199310000-00001.PubMedCrossRefGoogle Scholar
  3. 3.
    Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M., & Gonzalez, F. J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicology and Applied Pharmacology, 140, 173–179. doi:10.1006/taap.1996.0210.PubMedCrossRefGoogle Scholar
  4. 4.
    Mimura, J., Yamashita, K., Nakamura, K., Morita, M., Takagi, T. N., Nakao, K., et al. (1997). Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes to Cells, 2, 645–654. doi:10.1046/j.1365-2443.1997.1490345.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Peters, J. M., Narotsky, M. G., Elizondo, G., Fernandez-Salguero, P. M., Gonzalez, F. J., & Abbott, B. D. (1999). Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicological Sciences, 47, 86–92. doi:10.1093/toxsci/47.1.86.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, J. S., Lim, H. S., Cho, S. I., Cheong, H. K., & Lim, M. K. (2003). Impact of Agent Orange exposure among Korean Vietnam veterans. Industrial Health, 41, 149–157. doi:10.2486/indhealth.41.149.PubMedCrossRefGoogle Scholar
  7. 7.
    Kang, H. K., Dalager, N. A., Needham, L. L., Patterson, D. G., Jr., Lees, P. S., Yates, K., et al. (2006). Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam. American Journal of Industrial Medicine, 49, 875–884. doi:10.1002/ajim.20385.PubMedCrossRefGoogle Scholar
  8. 8.
    Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., et al. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovascular Toxicology, 1, 285–298. doi:10.1385/CT:1:4:285.PubMedCrossRefGoogle Scholar
  9. 9.
    Jokinen, M. P., Walker, N. J., Brix, A. E., Sells, D. M., Haseman, J. K., & Nyska, A. (2003). Increase in cardiovascular pathology in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3′,4,4′,5-pentachlorobiphenyl. Cardiovascular Toxicology, 3, 299–310. doi:10.1385/CT:3:4:299.PubMedCrossRefGoogle Scholar
  10. 10.
    Brunnberg, S., Andersson, P., Lindstam, M., Paulson, I., Poellinger, L., & Hanberg, A. (2006). The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure-effects in vital organs. Toxicology, 224, 191–201. doi:10.1016/j.tox.2006.04.045.PubMedCrossRefGoogle Scholar
  11. 11.
    Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension, 44, 248–252. doi:10.1161/01.HYP.0000138070.47616.9d.PubMedCrossRefGoogle Scholar
  12. 12.
    Slezak, B. P., Hatch, G. E., DeVito, M. J., Diliberto, J. J., Slade, R., Crissman, K., et al. (2000). Oxidative stress in female B6C3F1 mice following acute and subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicological Sciences, 54, 390–398. doi:10.1093/toxsci/54.2.390.PubMedCrossRefGoogle Scholar
  13. 13.
    Huwe, J. K., & Smith, D. J. (2005). Laboratory and on-farm studies on the bioaccumulation and elimination of dioxins from a contaminated mineral supplement fed to dairy cows. Journal of Agricultural and Food Chemistry, 53, 2362–2370. doi:10.1021/jf0480997.PubMedCrossRefGoogle Scholar
  14. 14.
    Simon, P. (2003). Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics (Oxford, England), 19, 1439–1440. doi:10.1093/bioinformatics/btg157.CrossRefGoogle Scholar
  15. 15.
    Lund, A. K., Peterson, S. L., Timmins, G. S., & Walker, M. K. (2005). Endothelin-1-mediated increase in reactive oxygen species and NADPH Oxidase activity in hearts of aryl hydrocarbon receptor (AhR) null mice. Toxicological Sciences, 88, 265–273. doi:10.1093/toxsci/kfi284.PubMedCrossRefGoogle Scholar
  16. 16.
    Dikalov, S., Griendling, K. K., & Harrison, D. G. (2007). Measurement of reactive oxygen species in cardiovascular studies. Hypertension, 49, 717–727. doi:10.1161/01.HYP.0000258594.87211.6b.PubMedCrossRefGoogle Scholar
  17. 17.
    Diliberto, J. J., DeVito, M. J., Ross, D. G., & Birnbaum, L. S. (2001). Subchronic exposure of [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in female B6C3F1 mice: Relationship of steady-state levels to disposition and metabolism. Toxicological Sciences, 61, 241–255. doi:10.1093/toxsci/61.2.241.PubMedCrossRefGoogle Scholar
  18. 18.
    Levick, J. R. (2003). Introduction to cardiovascular physiology. London: Hodder Arnold.Google Scholar
  19. 19.
    Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications, 236, 313–322. doi:10.1006/bbrc.1997.6943.PubMedCrossRefGoogle Scholar
  20. 20.
    Venugopal, R., & Jaiswal, A. K. (1996). Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proceedings of the National Academy of Sciences of the United States of America, 93, 14960–14965. doi:10.1073/pnas.93.25.14960.PubMedCrossRefGoogle Scholar
  21. 21.
    Muscoli, C., Cuzzocrea, S., Riley, D. P., Zweier, J. L., Thiemermann, C., Wang, Z. Q., et al. (2003). On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. British Journal of Pharmacology, 140, 445–460. doi:10.1038/sj.bjp.0705430.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsukahara, C., Sugiyama, F., Paigen, B., Kunita, S., & Yagami, K. (2004). Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin resistance in the progeny of an NZO/HILtJ x C3H/HeJ intercross. Mammalian Genome, 15, 943–950. doi:10.1007/s00335-004-2411-3.PubMedCrossRefGoogle Scholar
  23. 23.
    Gross, V., & Luft, F. C. (2003). Exercising restraint in measuring blood pressure in conscious mice. Hypertension, 41, 879–881. doi:10.1161/01.HYP.0000060866.69947.D1.PubMedCrossRefGoogle Scholar
  24. 24.
    Kario, K., Matsuo, T., Kobayashi, H., Imiya, M., Matsuo, M., & Shimada, K. (1996). Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients. Advanced silent cerebrovascular damage in extreme dippers. Hypertension, 27, 130–135.PubMedGoogle Scholar
  25. 25.
    Shimada, K., Kawamoto, A., Matsubayashi, K., Nishinaga, M., Kimura, S., & Ozawa, T. (1992). Diurnal blood pressure variations and silent cerebrovascular damage in elderly patients with hypertension. Journal of Hypertension, 10, 875–878.PubMedGoogle Scholar
  26. 26.
    Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A., et al. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 377, 239–242. doi:10.1038/377239a0.PubMedCrossRefGoogle Scholar
  27. 27.
    Pollock, D. M. (2005). Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension, 45, 477–480. doi:10.1161/01.HYP.0000158262.11935.d0.PubMedCrossRefGoogle Scholar
  28. 28.
    Bagchi, D., Balmoori, J., Bagchi, M., Ye, X., Williams, C. B., & Stohs, S. J. (2002). Comparative effects of TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicology, 175, 73–82. doi:10.1016/S0300-483X(02)00062-8.PubMedCrossRefGoogle Scholar
  29. 29.
    Hassoun, E. A., Wilt, S. C., DeVito, M. J., Van, B. A., Alsharif, N. Z., Birnbaum, L. S., et al. (1998). Induction of oxidative stress in brain tissues of mice after subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 42, 23–27.PubMedGoogle Scholar
  30. 30.
    Hassoun, E. A., Li, F., Abushaban, A., & Stohs, S. J. (2000). The relative abilities of TCDD and its congeners to induce oxidative stress in the hepatic and brain tissues of rats after subchronic exposure. Toxicology, 145, 103–113. doi:10.1016/S0300-483X(99)00221-8.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, H. L., Hsu, C. Y., Hung, D. Z., & Hu, M. L. (2006). Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants. The Science of the Total Environment, 372, 12–19. doi:10.1016/j.scitotenv.2006.06.008.PubMedCrossRefGoogle Scholar
  32. 32.
    Alsharif, N. Z., & Hassoun, E. A. (2004). Protective effects of vitamin A and vitamin E succinate against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced body wasting, hepatomegaly, thymic atrophy, production of reactive oxygen species and DNA damage in C57BL/6J mice. Basic & Clinical Pharmacology & Toxicology, 95, 131–138.Google Scholar
  33. 33.
    Slim, R., Toborek, M., Robertson, L. W., Lehmler, H. J., & Hennig, B. (2000). Cellular glutathione status modulates polychlorinated biphenyl-induced stress response and apoptosis in vascular endothelial cells. Toxicology and Applied Pharmacology, 166, 36–42. doi:10.1006/taap.2000.8944.PubMedCrossRefGoogle Scholar
  34. 34.
    Dong, W., Teraoka, H., Yamazaki, K., Tsukiyama, S., Imani, S., Imagawa, T., et al. (2002). 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: Local circulation failure in the dorsal midbrain is associated with increased apoptosis. Toxicological Sciences, 69, 191–201. doi:10.1093/toxsci/69.1.191.PubMedCrossRefGoogle Scholar
  35. 35.
    Pelclova, D., Prazny, M., Skrha, J., Fenclova, Z., Kalousova, M., Urban, P., et al. (2007). 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity. Human and Experimental Toxicology, 26, 705–713. doi:10.1177/0960327107083971.PubMedCrossRefGoogle Scholar
  36. 36.
    Hassoun, E. A., Al-Ghafri, M., & Abushaban, A. (2003). The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radical Biology and Medicine, 35, 1028–1036. doi:10.1016/S0891-5849(03)00458-1.PubMedCrossRefGoogle Scholar
  37. 37.
    Lim, J., DeWitt, J. C., Sanders, R. A., Watkins, J. B., III, & Henshel, D. S. (2007). Suppression of endogenous antioxidant enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in chicken liver during development. Archives of Environmental Contamination and Toxicology, 52, 590–595. doi:10.1007/s00244-006-0168-2.PubMedCrossRefGoogle Scholar
  38. 38.
    Andreyev, A. Y., Kushnareva, Y. E., & Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry. Biokhimiia, 70, 200–214. doi:10.1007/s10541-005-0102-7.PubMedGoogle Scholar
  39. 39.
    Puddu, P., Puddu, G. M., Cravero, E., De, P. S., & Muscari, A. (2007). The putative role of mitochondrial dysfunction in hypertension. Clinical and Experimental Hypertension, 29, 427–434. doi:10.1080/10641960701613852.PubMedCrossRefGoogle Scholar
  40. 40.
    Senft, A. P., Dalton, T. P., Nebert, D. W., Genter, M. B., Hutchinson, R. J., & Shertzer, H. G. (2002). Dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicology and Applied Pharmacology, 178, 15–21. doi:10.1006/taap.2001.9314.PubMedCrossRefGoogle Scholar
  41. 41.
    Genter, M. B., Clay, C. D., Dalton, T. P., Dong, H., Nebert, D. W., & Shertzer, H. G. (2006). Comparison of mouse hepatic mitochondrial versus microsomal cytochromes P450 following TCDD treatment. Biochemical and Biophysical Research Communications, 342, 1375–1381. doi:10.1016/j.bbrc.2006.02.121.PubMedCrossRefGoogle Scholar
  42. 42.
    Verhaar, M. C., Westerweel, P. E., van Zonneveld, A. J., & Rabelink, T. J. (2004). Free radical production by dysfunctional eNOS. Heart (British Cardiac Society), 90, 494–495. doi:10.1136/hrt.2003.029405.Google Scholar
  43. 43.
    Moens, A. L., & Kass, D. A. (2006). Tetrahydrobiopterin and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2439–2444. doi:10.1161/01.ATV.0000243924.00970.cb.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitchell, B. M., Dorrance, A. M., & Webb, R. C. (2003). GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats. American Journal of Physiology. Heart and Circulatory Physiology, 285, H2165–H2170.PubMedGoogle Scholar
  45. 45.
    Mitchell, B. M., Dorrance, A. M., & Webb, R. C. (2003). GTP cyclohydrolase 1 downregulation contributes to glucocorticoid hypertension in rats. Hypertension, 41, 669–674. doi:10.1161/01.HYP.0000051889.62249.5D.PubMedCrossRefGoogle Scholar
  46. 46.
    Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. The Journal of Clinical Investigation, 111, 1201–1209.PubMedGoogle Scholar
  47. 47.
    Andreasen, E. A., Mathew, L. K., & Tanguay, R. L. (2006). Regenerative growth is impacted by TCDD: Gene expression analysis reveals extracellular matrix modulation. Toxicological Sciences, 92, 254–269. doi:10.1093/toxsci/kfj118.PubMedCrossRefGoogle Scholar
  48. 48.
    Carney, S. A., Chen, J., Burns, C. G., Xiong, K. M., Peterson, R. E., & Heideman, W. (2006). Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Molecular Pharmacology, 70, 549–561. doi:10.1124/mol.106.025304.PubMedCrossRefGoogle Scholar
  49. 49.
    Puntarulo, S., & Cederbaum, A. I. (1998). Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radical Biology and Medicine, 24, 1324–1330. doi:10.1016/S0891-5849(97)00463-2.PubMedCrossRefGoogle Scholar
  50. 50.
    Shertzer, H. G., Clay, C. D., Genter, M. B., Chames, M. C., Schneider, S. N., Oakley, G. G., et al. (2004). Uncoupling-mediated generation of reactive oxygen by halogenated aromatic hydrocarbons in mouse liver microsomes. Free Radical Biology and Medicine, 36, 618–631. doi:10.1016/j.freeradbiomed.2003.11.014.PubMedCrossRefGoogle Scholar
  51. 51.
    Annas, A., & Brittebo, E. B. (1998). Localization of cytochrome P4501A1 and covalent binding of a mutagenic heterocyclic amine in blood vessel endothelia of rodents. Toxicology, 129, 145–156. doi:10.1016/S0300-483X(98)00087-0.PubMedCrossRefGoogle Scholar
  52. 52.
    Teraoka, H., Dong, W., Tsujimoto, Y., Iwasa, H., Endoh, D., Ueno, N., et al. (2003). Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. Biochemical and Biophysical Research Communications, 304, 223–228. doi:10.1016/S0006-291X(03)00576-X.PubMedCrossRefGoogle Scholar
  53. 53.
    Kaplan, N. M. (2002). In N. M. Kaplan (Ed.), Kaplan’s clinical hypertension (pp. 56–135). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  54. 54.
    Schiffrin, E. L. (2005). Vascular endothelin in hypertension. Vascular Pharmacology, 43, 19–29. doi:10.1016/j.vph.2005.03.004.PubMedCrossRefGoogle Scholar
  55. 55.
    Diliberto, J. J., Burgin, D., & Birnbaum, L. S. (1999). Effects of CYP1A2 on disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2′,4,4′,5,5′-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL6N and 129/Sv) strains of mice. Toxicology and Applied Pharmacology, 159, 52–64. doi:10.1006/taap.1999.8720.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Phillip G. Kopf
    • 1
  • Janice K. Huwe
    • 2
  • Mary K. Walker
    • 1
    • 3
  1. 1.College of PharmacyUniversity of New Mexico Health Sciences Center, MSC09 5360AlbuquerqueUSA
  2. 2.Biosciences Research Laboratory, Agricultural Research StationUnited States Department of AgricultureFargoUSA
  3. 3.Department of Cell Biology and Physiology, School of MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA

Personalised recommendations