Cardiovascular Toxicology

, Volume 8, Issue 4, pp 161–171 | Cite as

Molecular Analysis of Cocaine-Induced Endothelial Dysfunction: Role of Endothelin-1 and Nitric Oxide

  • Leena Pradhan
  • Debasis Mondal
  • Surabhi Chandra
  • Mussa Ali
  • Krishna C. Agrawal


Cocaine remains the most frequently used illicit substance. Although cocaine-induced atherosclerosis is well documented, its mechanism of action on human vascular endothelial cells has not been determined. Nitric oxide (NO) and endothelin-1 (ET-1) are involved in endothelial cell activation and leukocyte recruitment. The present study monitored the effects of cocaine on NO and ET-1 production in human aortic endothelial cells (HAECs) and the effects of sodium nitroprusside (SNP) and BQ-123 on leukocyte adhesion to HAECs. Acute exposure to cocaine (1 and 3 μM) significantly increased ET-1 production (2-fold) and ET-1 receptor type-A (ETAR) protein expression, within 6–12 h. Cocaine exposure for a longer duration (24–72 h) showed a temporal decrease in both NO production and endothelial NO-synthase (eNOS) expression. The cocaine-mediated suppression of NO was ameliorated by co-treatment of cells with the ETAR blocker, BQ-123 (5 μM). Furthermore, both short-term (24 h) and long-term (72 h) exposure to cocaine increased endothelial adhesion of monocytes (U937 cells) by 20% and 40%, respectively, which were also suppressed by BQ-123 and SNP co-treatment. These data suggest that a concomitant increase in both ET-1 and ETAR expression in cocaine exposed HAECs may enhance signaling via the ETAR which decreases eNOS expression and NO production, and ultimately results in endothelial activation and leukocyte adhesion. Our findings implicate a molecular mechanism of action of cocaine and a therapeutic effect of ETAR-specific inhibitor in suppressing the cocaine-induced endothelial dysfunction.


Cocaine Endothelial dysfunction HAECs Leukocyte adhesion Endothelin-1 Endothelin receptors Nitric oxide 



This work was sponsored by the National Institutes of Health grants: R01-HL63128 and R01HL073691.


  1. 1.
    Pozner, C. N., Levine, M., & Zane, R. (2005). The cardiovascular effects of cocaine. The Journal of Emergency Medicine, 29(2), 173–178. doi: 10.1016/j.jemermed.2005.01.019. Review.PubMedCrossRefGoogle Scholar
  2. 2.
    McCord, J., Jneid, H., Hollander, J. E., et al. (2008). Management of cocaine-associated chest pain and myocardial infarction: A scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology. Circulation, 117(14), 1897–1907. Epub 2008 Mar 17. Review. doi: 10.1161/CIRCULATIONAHA.107.188950.Google Scholar
  3. 3.
    Boghdadi, M. S., & Henning, R. J. (1997). Cocaine: Pathophysiology and clinical toxicology. Heart & Lung, 26, 466–483. doi: 10.1016/S0147-9563(97)90040-6.CrossRefGoogle Scholar
  4. 4.
    Havranek, E. P., Nademanee, K., Grayburn, P. A., & Eichhorn, E. J. (1996). Endothelium-dependent vasorelaxation is impaired in cocaine arteriopathy. Journal of the American College of Cardiology, 28, 1168–1174. doi: 10.1016/S0735-1097(96)00299-9.PubMedCrossRefGoogle Scholar
  5. 5.
    Pradhan, L., Dabisch, P. A., Liles, J. T., Agrawal, K. C., & Kadowitz, P. J. (2003). Effect of acute intravenous cocaine administration on endothelium-dependent vasodepressor responses to acetylcholine. Journal of Cardiovascular Pharmacology and Therapeutics, 8, 43–51. doi: 10.1177/107424840300800i107.PubMedCrossRefGoogle Scholar
  6. 6.
    Pradhan, L., Dabisch, P. A., Liles, J. T., Murthy, S. N., Baber, S. R., Simpson, S. A., et al. (2005). Effect of binge cocaine treatment on hindlimb vascular function. Journal of Applied Toxicology, 25, 479–490. doi: 10.1002/jat.1083.PubMedCrossRefGoogle Scholar
  7. 7.
    Kolodgie, F. D., Virmani, R., Cornhill, J. F., Herderick, E. E., & Smialek, J. (1991). Increase in atherosclerosis and adventitial mast cells in cocaine abusers: An alternative mechanism of cocaine-associated coronary vasospasm and thrombosis. Journal of the American College of Cardiology, 17, 1553–1560.PubMedCrossRefGoogle Scholar
  8. 8.
    Bacharach, J. M., Colville, D. S., & Lie, J. T. (1992). Accelerated atherosclerosis, aneurysmal disease, and aortitis: Possible pathogenetic association with cocaine abuse. International Angiology, 11, 83–86.PubMedGoogle Scholar
  9. 9.
    Kolodgie, F. D., Wilson, P. S., Cornhill, J. F., Herderick, E. E., Mergner, W. J., & Virmani, R. (1993). Increased prevalence of aortic fatty streaks in cholesterol-fed rabbits administered intravenous cocaine: The role of vascular endothelium. Toxicologic Pathology, 21, 425–435.PubMedCrossRefGoogle Scholar
  10. 10.
    Mouhaffel, A. H., Madu, E. C., Satmary, W. A., & Fraker, T. D, Jr. (1995). Cardiovascular complications of cocaine. Chest, 107, 1426–1434. doi: 10.1378/chest.107.5.1426.PubMedCrossRefGoogle Scholar
  11. 11.
    Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362, 801–809. doi: 10.1038/362801a0.PubMedCrossRefGoogle Scholar
  12. 12.
    Clancy, R. M., & Abramson, S. B. (2000). Acetylcholine prevents intercellular adhesion molecule 1 (CD54)-induced focal adhesion complex assembly in endothelial cells via a nitric oxide-cGMP-dependent pathway. Arthritis and Rheumatism, 43, 2260–2264. doi :10.1002/1529-0131(200010)43:10≤2260::AID-ANR13≥3.0.CO;2-R.Google Scholar
  13. 13.
    Qian, H., Neplioueva, V., Shetty, G. A., Channon, K. M., & George, S. E. (1999). Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation, 99, 2979–2982.PubMedGoogle Scholar
  14. 14.
    Kubes, P., Suzuki, M., & Granger, D.N. (1991). Nitric oxide: An endogenous modulator of leukocyte adhesion. Proceedings of the National Academy of Sciences of the United States of America, 88, 4651–4655. doi: 10.1073/pnas.88.11.4651.
  15. 15.
    De Caterina, R., Libby, P., Peng, H. B., Thannickal, V. J., Rajavashisth, T. B., Gimbrone, M. A, Jr., et al. (1995). Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. The Journal of Clinical Investigation, 96, 60–68. doi: 10.1172/JCI118074.PubMedCrossRefGoogle Scholar
  16. 16.
    He, J., Xiao, Y., & Zhang, L. (2001). Cocaine-mediated apoptosis in bovine coronary artery endothelial cells: Role of nitric oxide. The Journal of Pharmacology and Experimental Therapeutics, 298, 180–187.PubMedGoogle Scholar
  17. 17.
    Kolodgie, F. D., Wilson, P. S., Mergner, W. J., & Virmani, R. (1999). Cocaine-induced increase in the permeability function of human vascular endothelial cell monolayers. Experimental and Molecular Pathology, 66, 109–122. doi: 10.1006/exmp.1999.2253.PubMedCrossRefGoogle Scholar
  18. 18.
    Gan, X., Zhang, L., Berger, O., Stins, M. F., Way, D., & Taub, D. D. (1999). Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clinical Immunology (Orlando, Fla.), 91, 68–76. doi: 10.1006/clim.1998.4683.CrossRefGoogle Scholar
  19. 19.
    Mo, W., Singh, A. K., Arruda, J. A., & Dunea, G. (1998). Role of nitric oxide in cocaine-induced acute hypertension. American Journal of Hypertension, 11, 708–714. doi: 10.1016/S0895-7061(98)00041-7.PubMedCrossRefGoogle Scholar
  20. 20.
    He, J., Yang, S., & Zhang, L. (2005). Effects of cocaine on nitric oxide production in bovine coronary artery endothelial cells. The Journal of Pharmacology and Experimental Therapeutics, 314(3), 980–986. doi: 10.1124/jpet.105.087452.PubMedCrossRefGoogle Scholar
  21. 21.
    Wilbert-Lampen, U., Seliger, C., Zilker, T., & Arendt, R. M. (1998). Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: Reversal by coincubation with sigma-receptor antagonists. Circulation, 98, 385–390.PubMedGoogle Scholar
  22. 22.
    Kumar, P., Kazzi, N. J., & Shankaran, S. (1995). Plasma immunoreactive endothelin-1 concentration in cord blood of normal term neonates. American Journal of Perinatology, 12, 113–115.PubMedCrossRefGoogle Scholar
  23. 23.
    Hendricks-Munoz, K. D., Gerrets, R. P., Higgins, R. D., Munoz, J. L., & Caines, V. V. (1996). Cocaine-stimulated endothelin–1 release is decreased by angiotensin-converting enzyme inhibitors in cultured endothelial cells. Cardiovascular Research, 31, 117–123.PubMedGoogle Scholar
  24. 24.
    Fandino, J., Sherman, J. D., Zuccarello, M., & Rapoport, R. M. (2003). Cocaine-induced endothelin-1-dependent spasm in rabbit basilar artery in vivo. Journal of Cardiovascular Pharmacology, 41, 158–161. doi: 10.1097/00005344-200302000-00002.PubMedCrossRefGoogle Scholar
  25. 25.
    Rossi, G. P., Seccia, T. M., & Nussdorfer, G. G. (2001). Reciprocal regulation of endothelin-1 and nitric oxide: Relevance in the physiology and pathology of the cardiovascular system. International Review of Cytology, 209, 241–272. doi: 10.1016/S0074-7696(01)09014-3.PubMedCrossRefGoogle Scholar
  26. 26.
    Mawji, I. A., & Marsden, P. A. (2003). Perturbations in paracrine control of the circulation: Role of the endothelial-derived vasomediators, endothelin-1 and nitric oxide. Microscopy Research and Technique, 60, 46–58. doi: 10.1002/jemt.10242.PubMedCrossRefGoogle Scholar
  27. 27.
    Boulanger, C., & Luscher, T. F. (1990). Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. The Journal of Clinical Investigation, 85, 587–590. doi: 10.1172/JCI114477.PubMedCrossRefGoogle Scholar
  28. 28.
    Luscher, T. F. (1992). Endothelin: Systemic arterial and pulmonary effects of a new peptide with potent biologic properties. The American Review of Respiratory Disease, 146, S56–S60.PubMedGoogle Scholar
  29. 29.
    Rosendorff, C. (1997). Endothelin, vascular hypertrophy, and hypertension. Cardiovascular Drugs and Therapy, 10, 795–802. doi: 10.1007/BF00053038.PubMedCrossRefGoogle Scholar
  30. 30.
    Mitchell, D., Bihari, A., Sandig, M., & Tyml, K. (2002). Endothelin-A receptor in rat skeletal muscle microvasculature. Microvascular Research, 64, 179–185. doi: 10.1006/mvre.2002.2427.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Woerkom, R., Beharry, K. D., Modanlou, H. D., Parker, J., Rajan, V., Akmal, Y., et al. (2004). Influence of morphine and naloxone on endothelin and its receptors in newborn piglet brain vascular endothelial cells: Clinical implications in neonatal care. Pediatric Research, 55, 147–151. doi: 10.1203/01.PDR.0000100756.32861.60.PubMedCrossRefGoogle Scholar
  32. 32.
    Zidovetzki, R., Chen, P., Chen, M., & Hofman, F. M. (1999). Endothelin-1-induced interleukin-8 production in human brain-derived endothelial cells is mediated by the protein kinase C and protein tyrosine kinase pathways. Blood, 94, 1291–1299.PubMedGoogle Scholar
  33. 33.
    Zhou, Q. L., Strichartz, G., & Davar, G. (2001). Endothelin-1 activates ET(A) receptors to increase intracellular calcium in model sensory neurons. Neuroreport, 12, 3853–3857. doi: 10.1097/00001756-200112040-00050.PubMedCrossRefGoogle Scholar
  34. 34.
    Galie, N., Manes, A., & Branzi, A. (2004). The endothelin system in pulmonary arterial hypertension. Cardiovascular Research, 61, 227–237. doi: 10.1016/j.cardiores.2003.11.026.PubMedCrossRefGoogle Scholar
  35. 35.
    Callera, G. E., Montezano, A. C., Touyz, R. M., Zorn, T. M., Carvalho, M. H., Fortes, Z. B., et al. (2004). ETA receptor mediates altered leukocyte-endothelial cell interaction and adhesion molecules expression in DOCA-salt rats. Hypertension, 43, 872–879. doi: 10.1161/01.HYP.0000117296.30296.14.PubMedCrossRefGoogle Scholar
  36. 36.
    Mawji, I. A., & Marsden, P. A. (2006). RNA transfection is a versatile tool to investigate endothelin–1 posttranscriptional regulation. Experimental Biology and Medicine, 231(6), 704–708. Maywood.Google Scholar
  37. 37.
    Nilsson, D., Wackenfors, A., Gustafsson, L., Ugander, M., Ingemansson, R., Edvinsson, L., et al. (2008). PKC and MAPK signalling pathways regulate vascular endothelin receptor expression. European Journal of Pharmacology, 580(1–2), 190–200. doi: 10.1016/j.ejphar.2007.10.071.PubMedCrossRefGoogle Scholar
  38. 38.
    Mattson, B. J., Bossert, J. M., Simmons, D. E., Nozaki, N., Nagarkar, D., Kreuter, J. D., et al. (2005). Cocaine-induced CREB phosphorylation in nucleus accumbens of cocaine-sensitized rats is enabled by enhanced activation of extracellular signal-related kinase, but not protein kinase A. Journal of Neurochemistry, 95, 1481–1494. doi: 10.1111/j.1471-4159.2005.03500.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Wedgwood, S., & Black, S. M. (2005). Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. American Journal of Physiology, Lung Cellular and Molecular Physiology, 288, L480–L487. doi: 10.1152/ajplung.00283.2004.CrossRefGoogle Scholar
  40. 40.
    Ramzy, D., Rao, V., Tumiati, L. C., Xu, N., Sheshgiri, R., Miriuka, S., et al. (2006). Elevated endothelin-1 levels impair nitric oxide homeostasis through a PKC-dependent pathway. Circulation, 114(1, Suppl), I319–I1326.PubMedGoogle Scholar
  41. 41.
    Kendirci, M., Pradhan, L., Trost, L., Gur, S., Chandra, S., Agrawal, K. C., et al. (2007). Peripheral mechanisms of erectile dysfunction in a rat model of chronic cocaine use. European Urology, 52, 555–563. doi: 10.1016/j.eururo.2007.03.022.PubMedCrossRefGoogle Scholar
  42. 42.
    Isabelle, M., Vergeade, A., Moritz, F., Dautréaux, B., Henry, J. P., Lallemand, F., et al. (2007). NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. Journal of Molecular and Cellular Cardiology, 42(2), 326–332. doi: 10.1016/j.yjmcc.2006.11.011.PubMedCrossRefGoogle Scholar
  43. 43.
    Duer, W. C., Spitz, D. J., & McFarland, S. (2006). Relationships between concentrations of cocaine and its hydrolysates in peripheral blood, heart blood, vitreous humor and urine. Journal of Forensic Sciences, 51, 421–425. doi: 10.1111/j.1556-4029.2006.00063.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Hart, C. L., Jatlow, P., Sevarino, K. A., & McCance-Katz, E. F. (2000). Comparison of intravenous cocaethylene and cocaine in humans. Psychopharmacology, 149(2), 153–162. doi: 10.1007/s002139900363.PubMedCrossRefGoogle Scholar
  45. 45.
    Parissis, J. T., Korovesis, S., Giazitzoglou, E., Kalivas, P., & Katritsis, D. (2002). Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension Correlations with plasma endothelin-1. International Journal of Cardiology, 83, 13–21. doi: 10.1016/S0167-5273(02)00021-9.PubMedCrossRefGoogle Scholar
  46. 46.
    Lai, S., Fishman, E. K., Lai, H., Moore, R., Cofrancesco, J., Jr., Pannu, H., et al. (2008). Long-term cocaine use and antiretroviral therapy are associated with silent coronary artery disease in African Americans with HIV infection who have no cardiovascular symptoms. Clinical Infectious Diseases, (Jan), 14. Epub ahead of print.Google Scholar
  47. 47.
    Dhillon, N. K., Peng, F., Bokhari, S., Callen, S., Shin, S. H., Zhu, X., et al. (2008). Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood-brain barrier: Implications for HIV-dementia. Journal of Neuroimmune Pharmacology, 3(1), 52–56. doi: 10.1007/s11481-007-9091-1.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Leena Pradhan
    • 1
    • 2
  • Debasis Mondal
    • 1
  • Surabhi Chandra
    • 1
  • Mussa Ali
    • 1
  • Krishna C. Agrawal
    • 1
  1. 1.Department of PharmacologyTulane University School of MedicineNew OrleansUSA
  2. 2.Department of Surgery, Division of Vascular SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations