Advertisement

Cardiovascular Toxicology

, Volume 8, Issue 2, pp 47–56 | Cite as

Trichloroethylene and Trichloroacetic Acid Regulate Calcium Signaling Pathways in Murine Embryonal Carcinoma Cells P19

  • Ornella I. SelminEmail author
  • Patricia A. Thorne
  • Patricia T. Caldwell
  • Mallory R. Taylor
Article

Abstract

Trichloroethylene (TCE) and its metabolite trichloroacetic acid (TCA) are ubiquitous environmental contaminants which have been regarded as risk factors for congenital heart malformations. An increasing body of evidence from in vivo and in vitro studies supports the notion that exposure to TCE and TCA may interfere with normal embryonic heart development. The expression of several genes coding for factors implicated in the regulation of cardiac development has been shown to be modified by TCE or TCA, but the molecular mechanisms that mediate these effects are still obscure. In this study, we investigated the global changes in gene expression caused by exposure of P19 embryonal carcinoma cells to TCE and TCA, and whether or not TCE and/or TCA influence the expression levels of genes encoding for proteins that regulate calcium fluxes in cardiac cells. We report that TCE and TCA disrupt the expression of genes involved in processes important during embryonic development suggesting that exposure to environmentally significant concentrations of TCE may have deleterious effects on specific stages of cardiac differentiation.

Keywords

Calcium/calmodulin-dependent protein kinase Embryonic development Environmental toxicant Gene expression Rynodine receptor 

Notes

Acknowledgments

This research was supported by NIH, SBPR Program No. P42ES04940. Thanks to GE Healthcare Codelink for the microarrays, to George Watts of the Microarray Facility and BioInformatic Service of the SWEHSC (NIH, NIEHS Grant No. ES06694), University of Arizona for carrying out the microarray analysis and help in analyzing the data. Thanks to the Honors College of the University of Arizona, for supporting MT.

References

  1. 1.
    Goldberg, S. J., Lebowitz, M. D., Graver, E. J., & Hicks, S. (1990). An association of human congenital cardiac malformations and drinking water contaminants. Journal of the American College of Cardiology, 16(1), 155–164.PubMedCrossRefGoogle Scholar
  2. 2.
    Yauck, J. S., Malloy, M. E., Blair, K., Simpson, P. M., & McCarver, D. G. (2004). Proximity of residence to trichloroethylene-emitting sites and increased risk of offspring congenital heart defects among older women. Birth Defects Research. Part A, Clinical and Molecular Teratology, 70(10), 808–814.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson, P. D., Dawson, B. V., & Goldberg, S. J. (1998). Cardiac teratogenicity of trichloroethylene metabolites. Journal of the American College of Cardiology, 32(2), 540–545.PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson, P. D., Dawson, B. V., & Goldberg, S. J. (1998). A review: Trichloroethylene metabolites: Potential cardiac teratogens. Environmental Health Perspectives, 106(4), 995–999.PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher, J. W., Channel, S. R., Eggers, J. S., Johnson, P. D., MacMahon, K., Goodyear, C. D., Sudberry, G. L., Warren, D. A., Latendresse, J. R., & Graeter, L. J. (2001). Trichloroethylene, trichloroacetic acid, and dichloroacetic acid: Do they affect fetal rat heart development? International Toxicological Sciences, 20, 257–267.CrossRefGoogle Scholar
  6. 6.
    Hardin, B. D., Kelman, B. J., & Brent, R. L. (2005). Trichloroethylene and dichloroethylene: A critical review of teratogenicity. Birth Defects Research. Part A, Clinical and Molecular Teratology, 73(12), 931–955.PubMedCrossRefGoogle Scholar
  7. 7.
    NAS (2006) Assessing the human health risks of trichloroethylene: Key scientific issues. Committee on human health risks of trichloroethylene, National Research Council. National Academies Press. http://www.nap.edu.
  8. 8.
    Drake, V. J., Koprowski, S. L., Lough, J. W., Hu, N., & Smith, S. M. (2006). Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. Environmental Health Perspectives, 114, 842–847.PubMedGoogle Scholar
  9. 9.
    Mishima, N., Hoffman, S., Hill, E. G., & Krug, E. L. (2006). Chick embryos exposed to trichloroethylene in an ex ovo culture model show selective defects in early endocardial cushion tissue formation. Birth Defects Research. Part A, Clinical and Molecular Teratology, 76(7), 517–527.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyer, A. S., Finch W. T., & Runyan, R. B. (2000). Trichloroethylene inhibits development of embryonic heart valve precursors in vitro. Toxicological Sciences, 53, 109–117.PubMedCrossRefGoogle Scholar
  11. 11.
    Ou, J., Ou, Z., McCarver, D. G., Hines, R. H., Oldham, K. T., Ackerman, A. W., & Pritchard, K. A., Jr. (2003). Trichloroethylene decreases heat shock protein 90 interactions with endothelial nitric oxide synthase: Implications for endothelial cell proliferation. Toxicological Sciences, 73, 90–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Shafer, T. J., Bushnell, P. J., Benignus, V. A., & Woodward, J. J. (2005). Perturbation of voltage-sensitive Ca++ channel function by volatile organic solvents. JEPT, 18 August. doi: 10.1124/JPET.105.090027.
  13. 13.
    Hoffmann, P., Heinroth, K., Richards, D., Plews, P., & Toraason, M. (1994). Depression of calcium dynamics in cardiac myocytes—a common mechanism of halogenated hydrocarbon anesthetics and solvents. Journal of Molecular Cell Cardiology, 26(5), 579–589.CrossRefGoogle Scholar
  14. 14.
    Collier, J. M., Selmin, O., Johnson, P. D., & Runyan, R. B. (2003). Trichloroethylene effects on gene expression during cardiac development. Birth Defects Research. Part A, 67, 488–495.CrossRefGoogle Scholar
  15. 15.
    Selmin, O., Thorne, P. A., Caldwell, P. T., Johnson, P. D., & Runyan, R. B. (2005). Effects of trichloroethylene and its metabolite trichloroacetic acid on the expression of vimentin in the rat H9C2. Cell Biology and Toxicology, 21, 83–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Davidson, I. W. F., & Beliles, R. P. (1991). Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics. Drug Metabolism Review, 23, 493–599 (Marcel Dekker Inc., New York).CrossRefGoogle Scholar
  17. 17.
    Bayer, K. U., Löhler, J., Schulman, H., & Harbers, K. (1999). Developmental expression of the CaM kinase II isoforms: Ubiquitous g and d-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Molecular Brain Research, 70, 147–154.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, H., Harris, T. M., Kim, H. H., & Childs, G. (2005). Cardiac myocyte differentiation: The Nkx2.5 and Cripto target genes in P19 clone 6 cells. Functional & Integrative Genomics, 5, 218–239.CrossRefGoogle Scholar
  19. 19.
    Szyf, M., Theberge, J., & Bozovic, V. (1996). Ras induces a general demethylation activity in mouse embryonal P19 cells. The Journal of Biological Chemistry, 279(21), 12690–12696.Google Scholar
  20. 20.
    Nakajima, T., Wang, R. S., Elovaara, E., Park, S. S., Gelboin, H. V., & Vainio, H. (1993). Cytochrome P450-related differences between rats and mice in the metabolism of benzene, toluene and trichloroethylene in liver microsomes. Biochemical Pharmacology, 9;45(5), 1079–1085.Google Scholar
  21. 21.
    Halmes, N. C., Samokyszyn, V. M., & Pumford, N. R. (1997). Covalent binding and inhibition of cytochrome P4502E1 by trichloroethylene. Xenobiotica, 27(1), 101–110.PubMedCrossRefGoogle Scholar
  22. 22.
    Bronley-DeLancey A., McMillan, D. C., McMillan, J. M., Jollow, D. J., Mohr, L. C., & Hoel, D. G. (2006). Application of cryopreserved human hepatocytes in trichloroethylene risk assessment: Relative disposition of chloral hydrate to trichloroacetate and trichloroethanol. Environmental Health Perspectives, 114(18), 1237–1242.PubMedCrossRefGoogle Scholar
  23. 23.
    Hard, A. L., Abdolell, M., Robinson, B. H., & Koren, G. (2005). Gene-expression analysis after alcohol exposure in the developing mouse. The Journal of Laboratory and Clinical Medicine, 145(1), 48–54.Google Scholar
  24. 24.
    Deltour, L., Ang, H. L., & Duester, G. (1996). Ethanol inhibitor of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. The FASEB Journal, 10(9), 1050–1057.PubMedGoogle Scholar
  25. 25.
    Reen, R. K., Dombkowski, A. A., Kresty, L. A., Cukovic, D., Mele, J. M., Salagrama, S., Nines, R., & Stoner, G. D. (2007). Effects of phenyl isothiocyanate on early molecular events in N-nitrosomethylbenzylamine-induced cytotoxicity in rat esophagus. Cancer Research, 67(13), 6484–6492.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, J. L., Chen, W. L., Tsai, S. Y., Sung, P. Y., & Huang, R. N. (2001). An in vitro model for evaluation of vaporous toxicity of trichloroethylene and tetrachloroethylene to CHO-K1 cells. Chemico-biological Interactions, 137, 139–154.PubMedCrossRefGoogle Scholar
  27. 27.
    Moreno, R. L., Goosen, T., Kent, U. M., Chung, F. L., & Hollenberg, P. F. (2001). Differential effects of naturally occurring isothiocyanates on the activities of cytochrome P4502E1 and the mutant P4502E1 T303A. Archives of Biochemistry and Biophysics, 391(1), 99–110.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakajiama, M., Yoshida, R., Shimada, N., Yamazaki, H., & Yokoi, T. (2001). Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metabolism and Disposition, 29(8), 1110–1113.Google Scholar
  29. 29.
    Pozzi, S., Rossetti, S., Bistulfi, G., & Sacchi, N. (2006). RAR-mediated epigenetic control of the cytochrome P450 Cyp26a1 in embryocarcinoma cells. Oncogene, 25, 1400–1407.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim, D., & Ghanayem, B. I. (2006). Comparative metabolism and disposition of trichloroethylene in Cyp2e1−/− and wild-type mice. Drug Metabolism and. Disposition, 34(12), 2020–2027.PubMedCrossRefGoogle Scholar
  31. 31.
    Caldwell, J. C., Keshava, N., & Evans, M. V. (2007). Difficulty of mode of action determination for trichloroethylene: An example of complex interactions of metabolites and other chemical exposures. Environmental and Molecular Mutagenesis Review Article. doi: 10.1002/em.20350.
  32. 32.
    MacDonald, J. L., Gin, C. S. Y., & Roskams, A. J. (2005). Stage-specific induction of DNA methyltransferases in olfactory receptor neuron development. Developmental Biology, 288, 461–473.PubMedCrossRefGoogle Scholar
  33. 33.
    Sharma, P., Senthilkumar, R. D., Brahmachari, V., Sundaramoorthy, E., Mahajan, A., Sharma, A., Sengupta, S. (2006). Mining literature for a comprehensive pathway analysis: A case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids in Health and Disease, 5, 1–19.PubMedCrossRefGoogle Scholar
  34. 34.
    Dow, J. L., & Green, T. (2000). Trichloroethylene induced vitamin b12 and folate deficiency leads to increased formic acid excretion in the rat. Toxicology, 146, 123–136.PubMedCrossRefGoogle Scholar
  35. 35.
    Tao, L., Yang, S., Xie, M., Kramer, P. M., & Pereira, M. A. (2000). Effect of trichloroethylene and its metabolites, dichloroacetic acid and trichloroacetic acid, on the methylation and expression of c-jun and c-myc protooncogenes in mouse liver: Prevention by methionine. Toxicological Sciences, 54, 399–407.PubMedCrossRefGoogle Scholar
  36. 36.
    Balke, C. W., & Shorofsky, S. R. (1998). Alteration in calcium handling in cardiac hypertrophy and heart failure. Cardiovascular Research, 37(2), 290–299 (review).PubMedCrossRefGoogle Scholar
  37. 37.
    Frey, N., McKinsley, T. A., & Olson, E. N. (2000). Decoding calcium signals involved in cardiac growth and function. Nature Medicine, 6(11), 1221–1227 (review).PubMedCrossRefGoogle Scholar
  38. 38.
    Porter, G. A., Jr., Makuck, R. F., & Rivkees, S. A. (2003). Intracellular calcium plays an essential role in cardiac developments. Developmental Dynamics, 227(2), 280–290.PubMedCrossRefGoogle Scholar
  39. 39.
    Xu, M., Welling, A., Paparisto, S., Hofmann, F., Klugbauer, N. (2003). Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from cav1.2-deficient mice. The Journal of Biological Chemistry, 278(42), 40837–40841.PubMedCrossRefGoogle Scholar
  40. 40.
    Fukushima, S., Kinoshita, A., Puatanachokchai, R., Kushida, M., Wanibuchi, H., & Morimura, K. (2005). Hormesis and dose-response-mediated mechanisms in carcinogenesis: Evidence for a threshold in carcinogenicity of non-genotoxic carcinogens. Carcinogenesis, 26(11), 1835–1845.PubMedCrossRefGoogle Scholar
  41. 41.
    Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M., & Pogwizd, S. M. (2005). Ca2+/calmodulin-dependent proteinase kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97(12), 1314–1322.PubMedCrossRefGoogle Scholar
  42. 42.
    Drake, V. J., Koprowski, S. L., Hu, N., Smith, S. M., & Lough, J. (2006). Cardiogenic effects of trichloroethylene and trichloroacetic acid following exposure during heart specification of avian development. Toxicological Sciences, 94(1), 153–162.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Ornella I. Selmin
    • 1
    Email author
  • Patricia A. Thorne
    • 1
  • Patricia T. Caldwell
    • 1
  • Mallory R. Taylor
    • 1
  1. 1.Department of Veterinary Science and MicrobiologyUniversity of ArizonaTucsonUSA

Personalised recommendations