Cardiovascular Toxicology

, Volume 8, Issue 1, pp 33–40 | Cite as

Chronic Contamination of Rats with 137Cesium Radionuclide: Impact on the Cardiovascular System

  • Yann GuéguenEmail author
  • Philippe Lestaevel
  • Line Grandcolas
  • Cédric Baudelin
  • Stéphane Grison
  • Jean-René Jourdain
  • Patrick Gourmelon
  • Maâmar Souidi


Cardiovascular system impairment has been observed in children and in liquidators exposed to the Chernobyl nuclear power plant accident. No experimental studies of animals have analyzed whether these disorders might be attributed to chronic ingestion of low levels of cesium 137 (137Cs). Biochemical, physiological, and molecular markers of the cardiovascular system were analyzed in rats exposed through drinking water to 137Cs at a dose of 500 Bq kg−1 (6500 Bq l−1). Plasma concentrations of CK and CK-MB were higher (+52%, P < 0.05) in contaminated rats. No histological alteration of the heart was observed, but gene expression was modified in the atria. Specifically, levels of ACE (angiotensin converting enzyme) and BNP (brain natriuretic peptide) gene expression increased significantly (P < 0.05). ECG analysis did not disclose any arrhythmia except ST- and RT-segment shortening (−9% and −11%, respectively, P < 0.05) in rats exposed to 137Cs. Mean blood pressure decreased (−10%, P < 0.05), and its circadian rhythm disappeared. Overall, chronic contamination by an extreme environmental dose of 137Cs for 3 months did not result in cardiac morphological changes, but the cardiovascular system impairments we observed could develop into more significant changes in sensitive animals or after longer contamination.


Cesium 137 Cardiovascular system ECG Markers Chernobyl Blood pressure Animals 



Angiotensin converting enzyme


Atrial natriuretic factor


Brain natriuretic peptide




Creatine kinase


Cytochrome P450






Lactate dehydrogenase


Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase






Vascular endothelial growth factor



The authors thank T. Loiseau and P. Voyer for their assistance during animal exposure and experimentation. This study was part of the ENVIRHOM research program, supported by the Institute for Radiological Protection and Nuclear Safety (IRSN).


  1. 1.
    Stara, J. F. (1965). Tissue distribution and excretion of cesium-137 in the guinea pig after administration by three different routes. Health Physics, 11, 1195–1202.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosoff, B., Cohn, S. H., & Spencer, H. (1963). I. Cesium-137 metabolism in man. Radiation Research, 19, 643–654.PubMedCrossRefGoogle Scholar
  3. 3.
    Furchner, J. E., Trafton, G. A., & Richmond, C. R. (1964). Distribution of cesium-137 after chronic exposure in dogs and mice. Proceedings of the Society for Experimental Biology and Medicine, 116, 375–378.PubMedGoogle Scholar
  4. 4.
    Cherenko, S. M., Larin, O. S., Gorobeyko, M. B., & Sichynava, R. M. (2004). Clinical analysis of thyroid cancer in adult patients exposed to ionizing radiation due to the Chernobyl nuclear accident: 5-year comparative investigations based on the results of surgical treatment. World Journal of Surgery, 28, 1071–1074.PubMedCrossRefGoogle Scholar
  5. 5.
    Kharchenko, V. P., Rassokhin, B. M., & Zubovskii, G. A. (2001). Value of bone densitometry in the determination of vertebral mineral density in participants of the clean-up after Chernobyl accident. Meditsina Truda i Promyshlennaia Ekologiia, 2, 29–32.PubMedGoogle Scholar
  6. 6.
    Titievskya, S. V., Tabachnikova, S. I., & Kutkoa, I. I. (1997). Complex approach to mental disorders after Chernobyl accident estimation. Biological Psychiatry, 42, 23S.CrossRefGoogle Scholar
  7. 7.
    Vykhovanets, E. V., Chernyshov, V. P., Slukvin, I. I., Antipkin, Y. G., Vasyuk, A., & Colos, V. (2000). Analysis of blood lymphocyte subsets in children living around Chernobyl exposed long-term to low doses of cesium-137 and various doses of iodine-131. Radiation Research, 153, 760–772.PubMedCrossRefGoogle Scholar
  8. 8.
    Lestaevel, P., Dhieux, B., Tourlonias, E., Houpert, P., Paquet, F., Voisin, P., Aigueperse, J., & Gourmelon, P. (2006). Evaluation of the effect of chronic exposure to (137)Cesium on sleep-wake cycle in rats. Toxicology, 226, 118–125.PubMedCrossRefGoogle Scholar
  9. 9.
    Dublineau, I., Grison, S., Grandcolas, L., Baudelin, C., Paquet, F., Voisin, P., Aigueperse, J., & Gourmelon, P. (2007). Effects of chronic 137Cs ingestion on barrier properties of jejunal epithelium in rats. Journal of Toxicology and Environmental Health A, 70, 810–819.CrossRefGoogle Scholar
  10. 10.
    Tissandie, E., Gueguen, Y., Lobaccaro, J. M., Aigueperse, J., Gourmelon, P., Paquet, F., & Souidi, M. (2006). Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats. Toxicology, 225, 75–80.PubMedGoogle Scholar
  11. 11.
    Souidi, M., Tissandie, E., Grandcolas, L., Grison, S., Paquet, F., Voisin, P., Aigueperse, J., Gourmelon, P., & Gueguen, Y. (2006). Chronic contamination with 137Cesium in rat: Effect on liver cholesterol metabolism. International Journal of Toxicology, 25, 493–497.PubMedCrossRefGoogle Scholar
  12. 12.
    Kovaleva L. I., Liubchenko P. N., & Basakova, T. V. (1992). The central hemodynamics of participants in the cleanup of the sequelae of the accident at the Chernobyl Atomic Electric Power Station 4 years after the accident. Gigiena Truda i Professional'nye Zabolevaniia, 3, 15–17.PubMedGoogle Scholar
  13. 13.
    Shashlov, S. V., & Vlasov, P. A. (1991). Morphologic characteristics of the myocardium of people dying after the Chernobyl Nuclear Power Station accident. Arkhiv Patologii, 53, 45–48.PubMedGoogle Scholar
  14. 14.
    Bandazhevskaya, G. S., Nesterenko, V. B., Babenko, V. I., Yerkovich, T. V., & Bandazhevsky, Y. I. (2004). Relationship between caesium (137Cs) load, cardiovascular symptoms, and source of food in ‘Chernobyl’ children—preliminary observations after intake of oral apple pectin. Swiss Medical Weekly, 134, 725–729.PubMedGoogle Scholar
  15. 15.
    Cwikel, J. G., Goldsmith, J. R., Kordysh, E., Quastel, M., & Abdelgani, A. (1997). Blood pressure among immigrants to Israel from areas affected by the Chernobyl disaster. Public Health Review, 25, 317–335.Google Scholar
  16. 16.
    Gritsuk, A. I., Matiukhina, T. G., Koval, A. N., Sergeenko, S. M., Svergun, V. T., Verner, A. I., & Gritsuk, N. A. (2002). Characteristics of mitochondria and myocardium ultrastructure of rats following chronic incorporation of cesium radionuclides 137 Cs. Aviakosmicheskaia i Ekologicheskaia Meditsina, 36, 50–54.PubMedGoogle Scholar
  17. 17.
    Bandazhevsky, Y. I., & Lelevich, V. V. (1995). Clinical and experimental aspects of the effect of incorporated radionuclides upon the organism. Gomel, Belarus: Belorussian Engineering Academy, Gomel State Medical Institute.Google Scholar
  18. 18.
    Coulon, R. (1993). Le 137Cs et l'accident de Tchernobyl, projet international AIEA (pp. 10–16). Jouve, Paris: Actualités sur le cesium.Google Scholar
  19. 19.
    Handl, J., Beltz, D., Botsch, W., Harb, S., Jakob, D., Michel, R., & Romantschuk, L. D. (2003). Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine. Health Physics, 84, 502–517.PubMedCrossRefGoogle Scholar
  20. 20.
    Prisyazhiuk, A., Pjatak, O. A., Buzanov, V. A., Reeves, G. K., & Beral, V. (1991). Cancer in the Ukraine, post-Chernobyl. Lancet, 338, 1334–1335.PubMedCrossRefGoogle Scholar
  21. 21.
    Kazakov, V. S., Demidchik, E. P., & Astakhova, L. N. (1992). Thyroid cancer after Chernobyl. Nature, 359, 21.PubMedCrossRefGoogle Scholar
  22. 22.
    Ivanov, V. K., Gorsky, A. I., Tsyb, A. F., Maksyutov, M. A., & Rastopchin, E. M. (1999). Dynamics of thyroid cancer incidence in Russia following the Chernobyl accident. Journal of Radiological Protection, 19, 305–318.PubMedCrossRefGoogle Scholar
  23. 23.
    Ivanov, V. K., Maksioutov, M. A., Chekin, S., Kruglova, Z. G., Petrov, A. V., & Tsyb, A. F. (2000). Radiation-epidemiological analysis of incidence of non-cancer diseases among the Chernobyl liquidators. Health Physics, 78, 495–501.PubMedCrossRefGoogle Scholar
  24. 24.
    Shkala, L. V. (1998). Metabolic disorders in digestive and hepatobiliary pathology in those who worked in the cleanup of the aftermath of the accident at the Chernobyl Atomic Electric Power Station. Likars'ka Sprava, 7, 42–45.PubMedGoogle Scholar
  25. 25.
    Bandazhevsky, Y. I. (2003). Chronic Cs-137 incorporation in children's organs. Swiss Medical Weekly, 133, 488–490.PubMedGoogle Scholar
  26. 26.
    Liubchenko, P. N., Kovaleva, L. I., Nikolaeva, A. P., Bendikov, E. A., Dubinina, E. B., & Ol'shanskii, V. A. (1994). Intrahepatic circulation in participants of clean-up after the Chernobyl Atomic Energy Plant accident. Meditsina Truda i Promyshlennaia Ekologiia, 2, 15–17.PubMedGoogle Scholar
  27. 27.
    Houpert, P., Lestaevel, P., Amourette, C., Dhieux, B., Bussy, C., & Paquet, F. (2004). Effect of U and 137Cs chronic contamination on dopamine and serotonin metabolism in the central nervous system of the rat. Canadian Journal of Physiology and Pharmacology, 82, 161–166.PubMedCrossRefGoogle Scholar
  28. 28.
    Cecchi, X., Wolff, D., Alvarez, O., & Latorre, R. (1987). Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle. Biophysics Journal, 52, 707–716.Google Scholar
  29. 29.
    Pierce, G. F., & Jaffe, A. S. (1986). Increased creatine kinase MB in the absence of acute myocardial infarction. Clinical Chemistry, 32, 2044–2051.PubMedGoogle Scholar
  30. 30.
    Tang, Y. D., Kuzman, J. A., Said, S., Anderson, B. E., Wang, X., & Gerdes, A. M. (2005). Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation, 112, 3122–3130.PubMedCrossRefGoogle Scholar
  31. 31.
    Kahaly, G. J., & Dillmann, W. H. (2005). Thyroid hormone action in the heart. Endocrine Reviews, 26, 704–728.PubMedCrossRefGoogle Scholar
  32. 32.
    Jacob, P., Kenigsberg, Y., Zvonova, I., Goulko, G., Buglova, E., Heidenreich, W. F., Golovneva, A., Bratilova, A. A., Drozdovitch, V., Kruk, J., Pochtennaja, G. T., Balonov, M., Demidchik, E. P., & Paretzke, H. G. (1999). Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. British Journal of Cancer, 80, 1461–1469.PubMedCrossRefGoogle Scholar
  33. 33.
    Inoue, S., Murakami, Y., Sano, K., Katoh, H., & Shimada, T. (2000). Atrium as a source of brain natriuretic polypeptide in patients with atrial fibrillation. Journal of Cardiac Failure, 6, 92–96.PubMedCrossRefGoogle Scholar
  34. 34.
    de Lemos, J. A., McGuire, D. K., & Drazner, M. H. (2003). B-type natriuretic peptide in cardiovascular disease. Lancet, 362, 316–322.PubMedCrossRefGoogle Scholar
  35. 35.
    Elbekai, R. H., & El-Kadi, A. O. (2006). Cytochrome P450 enzymes: Central players in cardiovascular health and disease. Pharmacology & Therapeutics, 112, 564–587.CrossRefGoogle Scholar
  36. 36.
    Hunter, A. L., Cruz, R. P., Cheyne, B. M., McManus, B. M., & Granville, D. J. (2004). Cytochrome p450 enzymes and cardiovascular disease. Canadian Journal of Physiology and Pharmacology, 82, 1053–1060.PubMedCrossRefGoogle Scholar
  37. 37.
    Spencer, C. I., Borg, J. J., Kozlowski, R. Z., & Sham, J. S. (2004). Differential effects of extracellular cesium on early afterdepolarizations in ventricular myocytes and arrhythmogenesis in isolated hearts of rats and guinea pigs. Pflügers Archiv, 448, 478–489.PubMedCrossRefGoogle Scholar
  38. 38.
    Satoh, T., & Zipes, D. P. (1998). Cesium-induced atrial tachycardia degenerating into atrial fibrillation in dogs: Atrial torsades de pointes? Journal of Cardiovascular Electrophysiology, 9, 970–975.PubMedCrossRefGoogle Scholar
  39. 39.
    Su, T., & Waxman, D. J. (2004). Impact of dimethyl sulfoxide on expression of nuclear receptors and drug-inducible cytochromes P450 in primary rat hepatocytes. Archives of Biochemistry and Biophysics, 424, 226–234.PubMedCrossRefGoogle Scholar
  40. 40.
    Gueguen, Y., Grandcolas, L., Baudelin, C., Grison, S., Tissandie, E., Jourdain, J. R., Paquet, F., Voisin, P., Aigueperse, J., Gourmelon, P., & Souidi, M. (2007). Effect of acetaminophen administration to rats chronically exposed to depleted uranium. Toxicology, 229, 62–72.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Yann Guéguen
    • 1
    Email author
  • Philippe Lestaevel
    • 1
  • Line Grandcolas
    • 1
  • Cédric Baudelin
    • 1
  • Stéphane Grison
    • 1
  • Jean-René Jourdain
    • 2
  • Patrick Gourmelon
    • 1
  • Maâmar Souidi
    • 1
  1. 1.Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie ExpérimentaleFontenay-aux-Roses CedexFrance
  2. 2.Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Dosimétrie interneFontenay-aux-Roses CedexFrance

Personalised recommendations