Cardiovascular Toxicology

, Volume 7, Issue 2, pp 61–66

Pathophysiology and diagnosis of cancer drug induced cardiomyopathy

  • Christian Zuppinger
  • Francesco Timolati
  • Thomas M. Suter


The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q–T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.


Cardiotoxicity Cancer Anthracycline Trastuzumab Diagnosis Cardiomyocytes 


  1. 1.
    Ewer, M. S., & Lippman, S. M. (2005). Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. Journal of Clinical Oncology, 23, 2900–2902.PubMedCrossRefGoogle Scholar
  2. 2.
    Felker, G. M., Thompson, R. E., Hare, J. M., Hruban, R. H., Clemetson, D. E., Howard, D. L., Baughman, K. L., & Kasper, E. K. (2000). Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. The New England Journal of Medicine, 342, 1077–1084.PubMedCrossRefGoogle Scholar
  3. 3.
    Mann, D. L. (1999). Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100, 999–1008.PubMedGoogle Scholar
  4. 4.
    Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97, 2869–2879.PubMedCrossRefGoogle Scholar
  5. 5.
    Lipshultz, S. E., Lipsitz, S. R., Mone, S. M., Goorin, A. M., Sallan, S. E., Sanders, S. P., Orav, E. J., Gelber, R. D., & Colan, S. D. (1995). Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. The New England Journal of Medicine, 332, 1738–1743.PubMedCrossRefGoogle Scholar
  6. 6.
    Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. The New England Journal of Medicine, 339, 900–905.PubMedCrossRefGoogle Scholar
  7. 7.
    Bristow, M. R., Mason, J. W., & Daniels, J. R. (1978). Monitoring of anthracycline cardiotoxicity. Cancer Treatment Reports, 62, 1607–1608.PubMedGoogle Scholar
  8. 8.
    Mackay, B., Ewer, M. S., Carrasco, C. H., & Benjamin, R. S. (1994). Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastructural Pathology, 18, 203–211.PubMedGoogle Scholar
  9. 9.
    Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.PubMedCrossRefGoogle Scholar
  10. 10.
    Hasinoff, B. B. (1998). Chemistry of dexrazoxane and analogues. Seminars in Oncology, 25, 3–9.PubMedGoogle Scholar
  11. 11.
    Gille, L., & Nohl, H. (1997). Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radical Biology & Medicine, 23, 775–782.CrossRefGoogle Scholar
  12. 12.
    Doroshow, J. H. (1983). Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Research, 43, 460–472.PubMedGoogle Scholar
  13. 13.
    Maeda, A., Honda, M., Kuramochi, T., & Takabatake, T. (1998). Doxorubicin cardiotoxicity: diastolic cardiac myocyte dysfunction as a result of impaired calcium handling in isolated cardiac myocytes. Japanese Circulation Journal, 62, 505–511.PubMedCrossRefGoogle Scholar
  14. 14.
    Kang, Y. J., Chen, Y., & Epstein, P. N. (1996). Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. The Journal of Biological Chemistry, 271, 12610–12616.PubMedCrossRefGoogle Scholar
  15. 15.
    Campbell, D. L., Stamler, J. S., & Strauss, H. C. (1996). Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. The Journal of General Physiology, 108, 277–293.PubMedCrossRefGoogle Scholar
  16. 16.
    Arai, M., Tomaru, K., Takizawa, T., Sekiguchi, K., Yokoyama, T., Suzuki, T., & Nagai, R. (1998). Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. Journal of Molecular and Cellular Cardiology, 30, 243–254.PubMedCrossRefGoogle Scholar
  17. 17.
    Dodd, D. A., Atkinson, J. B., Olson, R. D., Buck, S., Cusack, B. J., Fleischer, S., & Boucek, R. J. Jr. (1993). Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. Journal of Clinical Investigation, 91, 1697–1705.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldhaber, J. I. (1996). Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. The American Journal of Physiology, 271, H823–833.PubMedGoogle Scholar
  19. 19.
    Lim, C. C., Zuppinger, C., Guo, X., Kuster, G. M., Helmes, M., Eppenberger, H. M., Suter, T. M., Liao, R., & Sawyer, D. B. (2004). Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. Journal of Biological Chemistry, 279, 8290–8299.PubMedCrossRefGoogle Scholar
  20. 20.
    Aries, A., Paradis, P., Lefebvre, C., Schwartz, R. J., & Nemer, M. (2004). Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 101, 6975–6980.PubMedCrossRefGoogle Scholar
  21. 21.
    Xiong, Y., Liu, X., Lee, C. P., Chua, B. H., & Ho, Y. S. (2006). Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radical Biology & Medicine, 41, 46–55.CrossRefGoogle Scholar
  22. 22.
    Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.PubMedCrossRefGoogle Scholar
  23. 23.
    Maejima, Y., Adachi, S., Morikawa, K., Ito, H., & Isobe, M. (2005). Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. Journal of Molecular and Cellular Cardiology, 38, 163–174.PubMedCrossRefGoogle Scholar
  24. 24.
    Sawyer, D. B., Zuppinger, C., Miller, T. A., Eppenberger, H. M., & Suter, T. M. (2002). Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation, 105, 1551–1554.PubMedCrossRefGoogle Scholar
  25. 25.
    Timolati, F., Ott, D., Pentassuglia, L., Giraud, M. N., Perriard, J. C., Suter, T. M., & Zuppinger, C. (2006). Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. Journal of Molecular and Cellular Cardiology, 41, 845–854.PubMedCrossRefGoogle Scholar
  26. 26.
    Cote, G. M., Miller, T. A., Lebrasseur, N. K., Kuramochi, Y., & Sawyer, D. B. (2005). Neuregulin-1alpha and beta isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro. Experimaental Cell Research, 311, 135–146.CrossRefGoogle Scholar
  27. 27.
    Kang, Y. J., Chen, Y., Yu, A., Voss-McCowan, M., & Epstein, P. N. (1997). Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. Journal of Clinical Investigation, 100, 1501–1506.PubMedGoogle Scholar
  28. 28.
    Slamon, D., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J. M., Pegram, M., Baselga, J., & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England Journal of Medicine, 344, 783–792.PubMedCrossRefGoogle Scholar
  29. 29.
    Drimal, J., Zurova-Nedelcevova, J., Knezl, V., Sotnikova, R., & Navarova, J. (2006). Cardiovascular toxicity of the first line cancer chemotherapeutic agents: doxorubicin, cyclophosphamide, streptozotocin and bevacizumab. Neuro Endocrinology Letters, 27(Suppl 2), 176–179.PubMedGoogle Scholar
  30. 30.
    Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., Walters, B., Shevtsov, S., Pesant, S., Clubb, F. J., Rosenzweig, A., Salomon, R. N., Van Etten, R. A., Alroy, J., Durand, J. B., & Force, T. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12, 908–916.PubMedCrossRefGoogle Scholar
  31. 31.
    Pegram, M., Hsu, S., Lewis, G., Pietras, R., Beryt, M., Sliwkowski, M., Coombs, D., Baly, D., Kabbinavar, F., & Slamon, D. (1999). Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene, 18, 2241–2251.PubMedCrossRefGoogle Scholar
  32. 32.
    Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., Gianni, L., Baselga, J., Bell, R., Jackisch, C., Cameron, D., Dowsett, M., Barrios, C. H., Steger, G., Huang, C. S., Andersson, M., Inbar, M., Lichinitser, M., Lang, I., Nitz, U., Iwata, H., Thomssen, C., Lohrisch, C., Suter, T. M., Ruschoff, J., Suto, T., Greatorex, V., Ward, C., Straehle, C., McFadden, E., Dolci, M. S., & Gelber, R. D. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. The New England Journal of Medicine, 353, 1659–1672.PubMedCrossRefGoogle Scholar
  33. 33.
    Strasser, F., Betticher, D. C., & Suter, T. M. (2001). Trastuzumab and breast cancer. The New England Journal of Medicine, 345, 996.PubMedGoogle Scholar
  34. 34.
    Sawyer, D. B., Zuppinger, C., Miller, T. A., Eppenberger, H. M., & Suter, T. M. (2002). Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1 beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation, 105, 1551–1554.PubMedCrossRefGoogle Scholar
  35. 35.
    Pentassuglia, L., Timolati, F., Seifriz, F., Abudukadier, K., Suter, T. M. & Zuppinger, C. (2007). Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes. Experimental Cell Research in press.Google Scholar
  36. 36.
    Ewer, M. S., Vooletich, M. T., Durand, J. B., Woods, M. L., Davis, J. R., Valero, V., & Lenihan, D. J. (2005). Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. Journal of Clinical Oncology, 23, 7820–7826.PubMedCrossRefGoogle Scholar
  37. 37.
    Tan-Chiu, E., Yothers, G., Romond, E., Geyer, C. E. Jr., Ewer, M., Keefe, D., Shannon, R. P., Swain, S. M., Brown, A., Fehrenbacher, L., Vogel, V. G., Seay, T. E., Rastogi, P., Mamounas, E. P., Wolmark, N., & Bryant, J. (2005). Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. Journal of Clinical Oncology, 23, 7811–7819.PubMedCrossRefGoogle Scholar
  38. 38.
    Dindogru, A., Barcos, M., Henderson, E. S., & Wallace, H. J. Jr. (1978). Electrocardiographic changes following adriamycin treatment. Medical and Pediatric Oncology, 5, 65–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Lipshultz, S. E., Rifai, N., Sallan, S. E., Lipsitz, S. R., Dalton, V., Sacks, D. B., & Ottlinger, M. E. (1997). Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation, 96, 2641–2648.PubMedGoogle Scholar
  40. 40.
    Nousiainen, T., Jantunen, E., Vanninen, E., Remes, J., Vuolteenaho, O., & Hartikainen, J. (1999). Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment for non-Hodgkin’s lymphoma. European Journal of Haematology, 62, 135–141.PubMedCrossRefGoogle Scholar
  41. 41.
    Kouloubinis, A., Kaklamanis, L., Ziras, N., Sofroniadou, S., Makaritsis, K., Adamopoulos, S., Revela, I., Athanasiou, A., Mavroudis, D., & Georgoulias, V. (2007). ProANP and NT-proBNP levels to prospectively assess cardiac function in breast cancer patients treated with cardiotoxic chemotherapy. International Journal of Cardiology.Google Scholar
  42. 42.
    Shureiqi, I., Cantor, S. B., Lippman, S. M., Brenner, D. E., Chernew, M. E., & Fendrick, A. M. (2002). Clinical and economic impact of multiple gated acquisition scan monitoring during anthracycline therapy. British Journal of Cancer, 86, 226–232.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Christian Zuppinger
    • 1
  • Francesco Timolati
    • 1
  • Thomas M. Suter
    • 1
  1. 1.Swiss Cardiovascular Center Bern, Cardiology, InselspitalUniversity HospitalBernSwitzerland

Personalised recommendations