Cardiovascular Toxicology

, Volume 7, Issue 1, pp 28–51

Heart rate variability in rodents: uses and caveats in toxicological studies

  • William H. RowanIII
  • Matthew J. Campen
  • Lindsay B. Wichers
  • William P. Watkinson
Article

Abstract

Heart rate variability (HRV) is a measure of cardiac pacing dynamics that has recently garnered a great deal of interest in environmental health studies. While the use of these measures has become popular, much uncertainty remains in the interpretation of results, both in terms of human and animal research. In humans, HRV endpoints, specifically chronic alterations in baseline HRV patterns, have been reasonably well characterized as prognostic indicators of adverse outcomes for a variety of diseases. However, such information is lacking for reversible HRV changes that may be induced by short-term exposures to environmental toxicants. Furthermore, there are minimal substantive data, either acute or chronic, regarding the pathological interpretation or prognostic value of toxicant-induced changes in HRV in rodents. The present report summarizes the physiological and clinical aspects of HRV, the methodological processes for obtaining these endpoints, and previous human and animal studies in the field of environmental health. Furthermore, we include a discussion of important caveats and recommendations for the interpretation of HRV data in animal research.

Keywords

Rat Mouse HRV SDNN Frequency domain Air pollution Particulate matter 

References

  1. 1.
    Hon, E. H., & Lee, S. T. (1963). The fetal electrocardiogram. I The electrocardiogram of the dying fetus. American Journal of Obstetrics and Gynecology, 87, 804–813.PubMedGoogle Scholar
  2. 2.
    Magari, S. R., Schwartz, J., Williams, P. L., Hauser, R., Smith T. J., & Christiani, D. C. (2002). The association of particulate air metal concentrations with heart rate variability. Environmental Health Perspectives, 110, 875–880.PubMedGoogle Scholar
  3. 3.
    Schwartz, J., Litonjua, A., Suh, H., Verrier, M., Zanobetti, A., Syring, M., Nearing, B., Verrier, R., Stone, P., MacCallum, G., Speizer, F. E., & Gold, D. R. (2005). Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax, 60, 455–461.PubMedGoogle Scholar
  4. 4.
    de Paula Santos, U., Braga, A. L., Giorgi, D. M., Pereira, L. A., Grupi, C. J., Lin, C. A., Bussacos, M. A., Zanetta, D. M., do Nascimento Saldiva, P. H., & Filho, M. T. (2005). Effects of air pollution on blood pressure and heart rate variability: A panel study of vehicular traffic controllers in the city of Sao Paulo, Brazil. European Heart Journal, 26, 193–200.PubMedGoogle Scholar
  5. 5.
    Liao, D., Duan, Y., Whitsel, E. A., Zheng, Z. J., Heiss, G., Chinchilli, V. M., & Lin, H. M. (2004). Association of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: A population-based study. American Journal of Epidemiology, 159, 768–777.PubMedGoogle Scholar
  6. 6.
    Holguin, F., Tellez-Rojo, M. M., Hernandez, M., Cortez, M., Chow J. C., Watson, J. G., Mannino, D., & Romieu, I. (2003). Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology, 14, 521–527.PubMedGoogle Scholar
  7. 7.
    Tarkiainen, T. H., Timonen, K. L., Vanninen, E. J., Alm, S., Hartikainen, J. E., & Pekkanen, J. (2003). Effect of acute carbon monoxide exposure on heart rate variability in patients with coronary artery disease. Clinical Physiology Functional Imaging, 23, 98–102.Google Scholar
  8. 8.
    Pope, C. A. 3rd, Verrier, R. L., Lovett, E. G., Larson, A. C., Raizenne, M. E., Kanner, R. E., Schwartz, J., Villegas, G. M., Gold D. R., & Dockery, D. W. (1999). Heart rate variability associated with particulate air pollution. American Heart Journal, 138, 890–899.PubMedGoogle Scholar
  9. 9.
    Liao, D., Creason, J., Shy, C., Williams, R., Watts, R., & Zweidinger, R. (1999). Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environmental Health Perspectives, 107, 521–525.PubMedGoogle Scholar
  10. 10.
    Corey, L. M., Baker, C., & Luchtel, D. L. (2006). Heart-rate variability in the apolipoprotein E knockout transgenic mouse following exposure to Seattle particulate matter. Journal of Toxicology and Environmental Health A, 69, 953–965.Google Scholar
  11. 11.
    Wellenius, G. A., Saldiva, P. H., Batalha, J. R., Krishna Murthy G. G., Coull, B. A., Verrier, R. L., & Godleski, J. J. (2002). Electrocardiographic changes during exposure to residual oil fly ash (ROFA) particles in a rat model of myocardial infarction. Toxicological Sciences, 66, 327–335.PubMedGoogle Scholar
  12. 12.
    Rivero, D. H., Soares, S. R., Lorenzi-Filho, G., Saiki, M., Godleski, J. J., Antonangelo, L., Dolhnikoff, M., & Saldiva, P.H (2005). Acute cardiopulmonary alterations induced by fine particulate matter of Sao Paulo, Brazil. Toxicological Sciences, 85, 898–905.PubMedGoogle Scholar
  13. 13.
    Harder, V., Gilmour, P., Lentner, B., Karg, E., Takenaka, S., Ziesenis, A., Stampfl, A., Kodavanti, U., Heyder, J., & Schulz, H. (2005). Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhalation Toxicology, 17, 29–42.PubMedGoogle Scholar
  14. 14.
    Chen, L. C., & Hwang, J. S. (2005). Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. IV Characterization of acute and chronic effects of ambient air fine particulate matter exposures on heart-rate variability. Inhalation Toxicology, 17, 209–216.PubMedGoogle Scholar
  15. 15.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.Google Scholar
  16. 16.
    Schwartz, J., Park, S. K., O’Neill, M. S., Vokonas, P. S., Sparrow D., Weiss, S., & Kelsey, K. (2005). Glutathione-S-transferase M1, obesity, statins, and autonomic effects of particles: Gene-by-drug-by-environment interaction. American Journal of Respiratory and Critical Care Medicine, 172, 1529–1533.PubMedGoogle Scholar
  17. 17.
    Delfino, R. J., Sioutas, C., & Malik, S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives, 113, 934–946.PubMedGoogle Scholar
  18. 18.
    Zareba, W., Nomura, A., & Couderc, J. P. (2001). Cardiovascular effects of air pollution: What to measure in ECG? Environmental Health Perspectives, 109(Suppl 4), 533–538.PubMedGoogle Scholar
  19. 19.
    Timonen, K. L., Vanninen, E., de Hartog, J., Ibald-Mulli, A., Brunekreef, B., Gold, D. R., Heinrich, J., Hoek, G., Lanki, T., Peters, A., Tarkiainen, T., Tiittanen, P., Kreyling, W., & Pekkanen, J. (2005). Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. Journal of Exposure Analysis and Environmental Epidemiology, 16(4), 332-341.Google Scholar
  20. 20.
    Vermylen, J., Nemmar, A., Nemery, B., Hoylaerts, M. F. (2005) Ambient air pollution and acute myocardial infarction. Journal of Thrombosis and Thrombolysis 3, 1955–1961.Google Scholar
  21. 21.
    Dockery, D. W. (2001). Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environmental Health Perspectives, 109 (Suppl 4), 483–486.PubMedGoogle Scholar
  22. 22.
    Pope, C. A. 3rd (2000). What do epidemiologic findings tell us about health effects of environmental aerosols? Journal of Aerosol Medicine, 13, 335–354.PubMedGoogle Scholar
  23. 23.
    Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S. C. Jr, & Tager, I. (2004). Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109, 2655–2671.PubMedGoogle Scholar
  24. 24.
    Peters, A. (2005). Particulate matter and heart disease: Evidence from epidemiological studies. Toxicology and Applied Pharmacology, 207, 477–482.PubMedGoogle Scholar
  25. 25.
    Bhatnagar, A. (2004). Cardiovascular pathophysiology of environmental pollutants. American Journal of Physiology-Heart and Circulatory Physiology, 286, H479–485PubMedGoogle Scholar
  26. 26.
    Schwartz, J., & Morris, R. (1995). Air pollution and hospital admissions for cardiovascular disease in Detroit, Michigan. American Journal of Epidemiology, 142, 23–35.PubMedGoogle Scholar
  27. 27.
    Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New England Journal of Medicine, 343, 1742–1749.PubMedGoogle Scholar
  28. 28.
    Peters, A., Liu, E., Verrier, R. L., Schwartz, J., Gold, D. R., Mittleman, M., Baliff, J., Oh, J. A., Allen, G., Monahan, K., & Dockery, D. W. (2000). Air pollution and incidence of cardiac arrhythmia. Epidemiology, 11, 11–17.PubMedGoogle Scholar
  29. 29.
    Watkinson, W. P., Campen, M. J., Lyon, J. Y., Highfill, J. W., Wiester, M. J., & Costa, D. L. (1997). Impact of the hypothermic response in inhalation toxicology studies. Annals of the New York Academy of Sciences, 813, 849–863.PubMedGoogle Scholar
  30. 30.
    Watkinson, W. P., Campen, M. J., & Costa, D. L. (1998). Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicological Science, 41, 209–216.Google Scholar
  31. 31.
    Watkinson, W. P., Campen, M. J., Nolan, J. P., & Costa, D.L (2001). Cardiovascular and systemic responses to inhaled pollutants in rodents: Effects of ozone and particulate matter. environ health perspect, 109 (Suppl 4), 539–546.PubMedGoogle Scholar
  32. 32.
    Wichers, L. B., Nolan, J. P., Winsett, D. W., Ledbetter, A. D., Kodavanti, U. P., Schladweiler, M. C., Costa, D. L., & Watkinson, W.P (2004). Effects of instilled combustion-derived particles in spontaneously hypertensive rats. Part I: Cardiovascular responses. Inhalation Toxicology, 16, 391–405.PubMedGoogle Scholar
  33. 33.
    Watkinson, W. P., Campen, M. J., Wichers, L. B., Nolan, J. P., & Costa, D. L. (2003). Cardiac and thermoregulatory responses to inhaled pollutants in healthy and compromised rodents: Modulation via interaction with environmental factors. Environmental Research, 92, 35–47.PubMedGoogle Scholar
  34. 34.
    Campen, M. J., Nolan, J. P., Schladweiler, M. C., Kodavanti, U. P., Costa, D. L., & Watkinson, W. P. (2002). Cardiac and thermoregulatory effects of instilled particulate matter-associated transition metals in healthy and cardiopulmonary-compromised rats. Journal of Toxicology and Environmental Health A, 65, 1615–1631.Google Scholar
  35. 35.
    Watkinson, W. P., & Gordon, C. J. (1993). Caveats regarding the use of the laboratory rat as a model for acute toxicological studies: Modulation of the toxic response via physiological and behavioral mechanisms. Toxicology, 81, 15–31.PubMedGoogle Scholar
  36. 36.
    Vassalle, M., Zhang, H. (2001). On the mechanisms of cholinergic control of the sinoatrial node discharge. Journal of Cardiovascular Pharmacology, 37, 173–186.PubMedGoogle Scholar
  37. 37.
    Jokkel, G., Bonyhay, I., & Kollai, M. (1995). Heart rate variability after complete autonomic blockade in man. Journal of the Autonomic Nervous System, 51, 85–89.PubMedGoogle Scholar
  38. 38.
    Japundzic, N., Grichois, M.-L., Zitoun, P., Laude, D., & Elghozi, J.-L. (1990). Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. Journal of the Autonomic Nervous System, 30, 91–100.PubMedGoogle Scholar
  39. 39.
    Cerutti, C., Gustin, M. P., Paultre, C. Z., Lo, M., Julien, C., Vincent, M., & Sassard, J. (1991). Autonomic nervous system and cardiovascular variability in rats: A spectral analysis approach. American Journal of Physiology, 261, H1292–H1299.PubMedGoogle Scholar
  40. 40.
    Kuwahara, M., Yayou, K., Ishii, K., Hashimoto, S., Tsubone, H., & Sugano, S. (1994). Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. Journal of Electrocardiology, 27, 333–337.PubMedGoogle Scholar
  41. 41.
    Aubert, A. E., Ramaekers, D., Beckers, F., Breem, R., Denef, C., van de Werf, F., & Ector, H. (1999). The analysis of heart rate variability in unrestrained rats. Validation of method and results. Computer Methods and Programs in Biomedicine, 60, 197–213.PubMedGoogle Scholar
  42. 42.
    Hashimoto, M., Kuwahara, M., Tsubone, H., & Sugano, S. (1999). Diurnal variation of autonomic nervous activity in the rat: Investigation by power spectral analysis of heart rate variability. Journal of Electrocardiology, 32, 167–171.PubMedGoogle Scholar
  43. 43.
    Cohen, M. A., & Taylor, J. A. (2002). Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. Journal of Physiology, 542, 669–683.PubMedGoogle Scholar
  44. 44.
    Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 482–492.PubMedGoogle Scholar
  45. 45.
    Malpas, S. C. (2002). Neural influences on cardiovascular variability: Possibilities and pitfalls. American Journal of Physiology-Heart and Circulatory Physiology, 282, H6–H20.PubMedGoogle Scholar
  46. 46.
    Stauss, H. M. (2003). Heart rate variability. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 285, R927–931.Google Scholar
  47. 47.
    Stein, P. K., & Kleiger, R. E. (1999). Insights from the study of heart rate variability. Annual Review of Medicine, 50, 249–261.PubMedGoogle Scholar
  48. 48.
    Gang, Y., & Malik, M. (2002). Heart rate variability in critical care medicine. Current Opinion in Critical Care, 8, 371–375.PubMedGoogle Scholar
  49. 49.
    Pumprla, J., Howorka, K., Groves, D., Chester, M., & Nolan, J. (2002). Functional assessment of heart rate variability: Physiological basis and practical applications. International Journal of Cardiology, 84, 1–14.PubMedGoogle Scholar
  50. 50.
    Beckers, F., Ramaekers, D., Speijer, G., Ector, H., Vanhaecke J., Verheyden, B., Van Cleemput, J., Droogne, W., Van de Werf, F., & Aubert, A. E. (2004). Different evolutions in heart rate variability after heart transplantation: 10-year follow-up. Transplantation, 78, 1523–1531.PubMedGoogle Scholar
  51. 51.
    Goldberger, A. L. (2006). Giles f. Filley lecture. Complex systems. Proceedings of the American Thoracic Society, 3, 467–471.PubMedGoogle Scholar
  52. 52.
    Baudrie, V., Tulen, J. H., Blanc, J., & Elghozi, J. L. (1997). Autonomic components of the cardiovascular responses to an acoustic startle stimulus in rats. Journal of Autonomic Pharmacology, 17, 303–309.PubMedGoogle Scholar
  53. 53.
    Takeuchi, H., Enzo, A., & Minamitani, H. (2001). Circadian rhythm changes in heart rate variability during chronic sound stress. Medical & Biological Engineering Computing, 39,113–117.Google Scholar
  54. 54.
    Yang, C. C. H., Shaw, F.-Z., Lai, C. J., Lai, C.-W., & Kuo, T. B. J (2003). Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats. Neuroscience Letters, 336, 21–24.PubMedGoogle Scholar
  55. 55.
    Campen, M. J., Tagaito, Y., Li, J., Balbir, A., Tankersley, C. G., Smith, P., Schwartz, A., & O’Donnell, C. P. (2004). Phenotypic variation in cardiovascular responses to acute hypoxic and hypercapnic exposure in mice. Physiol Genomics, 20, 15–20.PubMedGoogle Scholar
  56. 56.
    Moody, G. B. (1992). ECB-based indices of physical activity. IEEE Computer Cardiology, 19, 403–406.Google Scholar
  57. 57.
    Jasson, S., Medigue, C., Maison-Blanche, P., Montano, N., Meyer L., Vermeiren, C., Mansier, P., Coumel, P., Malliani, A., & Swynghedauw, B. (1997). Instant power spectrum analysis of heart rate variability during orthostatic tilt using a time-/frequency-domain method. Circulation, 96, 3521–3526.PubMedGoogle Scholar
  58. 58.
    Pereira de Souza Neto, E., Custaud, M., Somody, L., & Gharib, C. (2001). Assessment of autonomic cardiovascular indices in non-stationary data in rats. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 128, 105–115.Google Scholar
  59. 59.
    Rubini, R., Porta, A., Baselli, G., Cerutti, S., & Paro, M. (1993). Power spectrum analysis of cardiovascular variability monitored by telemetry in conscious unrestrained rats. Journal of the Autonomic Nervous System, 45, 181–190.PubMedGoogle Scholar
  60. 60.
    Mansier, P., Medigue, C., Charlotte, N., Vermeiren, C., Coraboeuf, E., Deroubai, E., Ratner, E., Chevalier, B., Clairambault, J., Carre, F., Dahkli, T., Bertin, B., Briand, P., Strosberg, D., & Swynghedauw, B. (1996). Decreased heart rate variability in transgenic mice overexpressing atrial beta 1-adrenoceptors. American Journal of Physiology, 271, H1465–H1472.PubMedGoogle Scholar
  61. 61.
    Mansier, P., Clairambault, J., Charlotte, N., Medigue, C., Vermeiren, C., LePape, G., Carre, F., Gounaropoulou, A., & Swynghedauw, B. (1996). Linear and non-linear analyses of heart rate variability: A minireview. Cardiovascular Research, 31, 371–379.PubMedGoogle Scholar
  62. 62.
    Pereira de Souza Neto, E., Custaud, M. A., Frutoso, J., Somody L., Gharib, C., & Fortrat, J. O. (2001). Smoothed pseudo Wigner-Ville distribution as an alternative to Fourier transform in rats. Autonomic Neuroscience, 87, 258–267.Google Scholar
  63. 63.
    Akselrod, S., Eliash, S., Oz, O., & Cohen, S. (1987). Hemodynamic regulation in SHR: Investigation by spectral analysis. American Journal of Physiology, 253, H176–H183.PubMedGoogle Scholar
  64. 64.
    Dunlap, E. D., Samols, E., Waite, L. C., & Pfeifer, M. A. (1987). Development of a method to determine autonomic nervous system function in the rat. Metabolism, 36, 193–197.PubMedGoogle Scholar
  65. 65.
    Ferrari, A. U., Daffonchio, A., Albergati, F., & Mancia, G. (1987). Inverse relationship between heart rate and blood pressure variabilities in rats. Hypertension, 10, 533–537.PubMedGoogle Scholar
  66. 66.
    Murphy, C. A., Sloan, R. P., & Myers, M. M. (1991). Pharmacologic responses and spectral analyses of spontaneous fluctuations in heart rate and blood pressure in SHR rats. Journal of the Autonomic Nervous System, 36, 237–250.PubMedGoogle Scholar
  67. 67.
    Baselli, G., & Cerutti, S. (1985). Identification techniques applied to processing of signals from cardiovascular systems. Medical Informatics (London) 10, 223–235.CrossRefGoogle Scholar
  68. 68.
    Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell’Orto, S., & Piccaluga, E., et al. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59, 178–193.PubMedGoogle Scholar
  69. 69.
    Boardman, A., Schlindwein, F. S., Rocha, A. P., & Leite, A. (2002). A study on the optimum order of autoregressive models for heart rate variability. Physiological Measurement, 23, 325–336.PubMedGoogle Scholar
  70. 70.
    Tankersley, C. G., Campen, M., Bierman, A., Flanders, S. E., Broman, K. W., & Rabold, R. (2004). Particle effects on heart-rate regulation in senescent mice. Inhalation Toxicology, 16, 381–390.PubMedGoogle Scholar
  71. 71.
    Campen, M. J., Tagaito Y., Jenkins, T. P., Balbir, A., & O’Donnell, C. P. (2005). Heart rate variability responses to hypoxic and hypercapnic exposures in different mouse strains. Journal of Applied Physiology, 99, 807–813.PubMedGoogle Scholar
  72. 72.
    Pinna, G. D., Maestri, R., Di Cesare, A., Colombo, R., & Minuco, G. (1994). The accuracy of power-spectrum analysis of heart-rate variability from annotated RR lists generated by Holter systems. Physiological Measurement, 15, 163–179.PubMedGoogle Scholar
  73. 73.
    Perlini, S., Giangregorio, F., Coco, M., Radaelli, A., Solda, P. L., Bernardi, L., & Ferrari, A. U. (1995). Autonomic and ventilatory components of heart rate and blood pressure variability in freely behaving rats. American Journal of Physiology, 269, H1729–1734.PubMedGoogle Scholar
  74. 74.
    Furlan, R., Guzzetti, S., Crivellaro, W., Dassi, S., Tinelli M., Baselli, G., Cerutti, S., Lombardi, F., Pagani, M., & Malliani, A. (1990). Continuous 24-h assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation, 81, 537–547.PubMedGoogle Scholar
  75. 75.
    Baselli, G., Cerutti, S., Civardi, S., Malliani, A., & Pagani, M. (1988). Cardiovascular variability signals: Towards the identification of a closed-loop model of the neural control mechanisms. IEEE Transactions on Biomedical Engineering, 35, 1033–1046.PubMedGoogle Scholar
  76. 76.
    Just, A., Faulhaber, J., & Ehmke, H. (2000). Autonomic cardiovascular control in conscious mice. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279, R2214–R2221.Google Scholar
  77. 77.
    Gehrmann, J., Hammer, P. E., Maguire, C. T., Wakimoto, H., Triedman, J. K., & Berul, C. I. (2000). Phenotypic screening for heart rate variability in the mouse. American Journal of Physiology-Heart and Circulatory Physiology, 279, H733–H740.PubMedGoogle Scholar
  78. 78.
    Swynghedauw, B., Jasson, S., Clairambault, J., Chevalier, B., Heymes, C., Medigue, C., Carre, F., & Mansier, P. (1997). Myocardial determinants in regulation of the heart rate. Journal of Molecular Medicine, 75, 860–866.PubMedGoogle Scholar
  79. 79.
    Routledge, H. C., Chowdhary, S., & Townend, J. N. (2002). Heart rate variability–a therapeutic target? Journal of Clinical Pharmacy and Therapeutics, 27, 85–92.PubMedGoogle Scholar
  80. 80.
    Kass, D. A., Hare, J. M., & Georgakopoulos, D. (1998). Murine cardiac function: A cautionary tail. Circulation Research, 82, 519–522.PubMedGoogle Scholar
  81. 81.
    Towa, S., Kuwahara, M., & Tsubone, H. (2004). Characteristics of autonomic nervous function in Zucker-fatty rats: Investigation by power spectral analysis of heart rate variability. Experimental Animals, 53, 137–144.PubMedGoogle Scholar
  82. 82.
    Hashimoto, M., Harada, T., Ishikawa, T., Obata, M., & Shibutani, Y. (2001). Investigation on diabetic autonomic neuropathy assessed by power spectral analysis of heart rate variability in WBN/Kob rats. Journal of Electrocardiology, 34, 243–250.PubMedGoogle Scholar
  83. 83.
    De Angelis, K., Schaan, B. D., Maeda, C. Y., Dall’Ago P., Wichi, R. B., & Irigoyen, M. C. (2002). Cardiovascular control in experimental diabetes. Brazilian Journal of Medical and Biological Research, 35, 1091–1100.PubMedGoogle Scholar
  84. 84.
    Schaan, B. D., Maeda, C. Y., Timm, H. B., Medeiros, S., Moraes R. S., Ferlin, E., Fernandes, T. G., Ribeiro, J. P., Schmid, H., & Irigoyen, M. C. (1997). Time course of changes in heart rate and blood pressure variability in streptozotocin-induced diabetic rats treated with insulin. Brazilian Journal of Medical and Biological Research, 30, 1081–1086.PubMedGoogle Scholar
  85. 85.
    Howarth, F. C., Jacobson, M., Shafiullah, M., & Adeghate, E. (2005). Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Experimental Physiology, 90, 827–835.PubMedGoogle Scholar
  86. 86.
    Howarth, F. C., Jacobson, M., Shafiullah, M., & Adeghate, E. (2006). Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat. Clinical and Experimental Pharmacology and Physiology, 33, 327–331.PubMedGoogle Scholar
  87. 87.
    Das, S., & O’Keefe, J. H. (2006). Behavioral cardiology: recognizing and addressing the profound impact of psychosocial stress on cardiovascular health. Current Atherosclerosis Reports, 8, 111–118.PubMedGoogle Scholar
  88. 88.
    Curtis, B. M., & O’Keefe, J. H. Jr. (2002). Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clinic Proceedings, 77, 45–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Sgoifo, A., Koolhaas, J., De Boer, S., Musso, E., Stilli, D., Buwalda, B., & Meerlo, P. (1999). Social stress, autonomic neural activation, and cardiac activity in rats. Neuroscience & Biobehavioral Reviews, 23, 915–923.Google Scholar
  90. 90.
    Sgoifo, A., Koolhaas, J. M., Musso, E., & De Boer, S. F. (1999). Different sympathovagal modulation of heart rate during social and nonsocial stress episodes in wild-type rats. Physiology & Behavior, 67, 733–738.Google Scholar
  91. 91.
    Sgoifo, A., Pozzato, C., Costoli, T., Manghi, M., Stilli, D., Ferrari, P. F., Ceresini, G., & Musso, E. (2001). Cardiac autonomic responses to intermittent social conflict in rats. Physiology & Behavior, 73, 343–349.Google Scholar
  92. 92.
    Sgoifo, A., Buwalda, B., Roos, M., Costoli, T., Merati, G., & Meerlo, P. (2006). Effects of sleep deprivation on cardiac autonomic and pituitary-adrenocortical stress reactivity in rats. Psychoneuroendocrinology, 31, 197–208.PubMedGoogle Scholar
  93. 93.
    Inagaki, H., Kuwahara, M., & Tsubone, H. (2004). Effects of psychological stress on autonomic control of heart in rats. Experimental Animals, 53, 373–378.PubMedGoogle Scholar
  94. 94.
    Inagaki, H., Kuwahara, M., & Tsubone, H. (2005). Changes in autonomic control of heart associated with classical appetitive conditioning in rats. Experimental Animals, 54, 61–69.PubMedGoogle Scholar
  95. 95.
    Grippo, A. J., Moffitt, J. A., & Johnson, A. K. (2002) Cardiovascular alterations and autonomic imbalance in an experimental model of depression. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 282, R1333–R1341.Google Scholar
  96. 96.
    Grippo, A. J., Beltz, T. G., & Johnson, A. K. (2003). Behavioral and cardiovascular changes in the chronic mild stress model of depression. Physiology & Behavior, 78, 703–710.Google Scholar
  97. 97.
    Nijsen, M. J., Croiset, G., Diamant, M., Stam, R., Delsing, D., de Wied, D., & Wiegant, V. M. (1998). Conditioned fear-induced tachycardia in the rat: Vagal involvement. European Journal of Pharmacology, 350, 211–222.PubMedGoogle Scholar
  98. 98.
    Grippo, A. J., Santos, C. M., Johnson, R. F., Beltz, T. G., Martins, J. B., Felder, R. B., & Johnson, A. K. (2004). Increased susceptibility to ventricular arrhythmias in a rodent model of experimental depression. American Journal of Physiology-Heart and Circulatory Physiology, 286, H619–H626.PubMedGoogle Scholar
  99. 99.
    Cohen, H., & Zohar, J. (2004). An animal model of posttraumatic stress disorder: The use of cut-off behavioral criteria. Annals of the New York Academy of Sciences, 1032, 167–178.PubMedGoogle Scholar
  100. 100.
    Pope, C. A. 3rd, Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71–77.PubMedGoogle Scholar
  101. 101.
    Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama, 295, 1127–1134.PubMedGoogle Scholar
  102. 102.
    Gong, H., Linn, W. S., Terrell, S. L., Anderson, K. R., Clark K. W., Sioutas, C., Cascio, W. E., Alexis, N., & Devlin, R. B. (2004). Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhalation Toxicology, 16, 731–744.PubMedGoogle Scholar
  103. 103.
    Campen, M. J., Tagaito, Y., Jenkins, T. P., Balbir, A., & O’Donnell, C. P. (2005). Heart rate variability responses to hypoxic and hypercapnic exposures in different mouse strains. Journal of Applied Physiology, 99, 807–813.PubMedGoogle Scholar
  104. 104.
    Kodavanti, U. P., Moyer, C. F., Ledbetter, A. D., Schladweiler M. C., Costa, D. L., Hauser, R., Christiani, D. C., & Nyska, A. (2003). Inhaled environmental combustion particles cause myocardial injury in the Wistar Kyoto rat. Toxicological Sciences, 71, 237–245.PubMedGoogle Scholar
  105. 105.
    Elder, A. C., Gelein, R., Azadniv, M., Frampton, M., Finkelstein, J., & Oberdorster, G. (2004). Systemic effects of inhaled ultrafine particles in two compromised, aged rat strains. Inhalation Toxicology, 16, 461–471.PubMedGoogle Scholar
  106. 106.
    Lippmann, M., Gordon, T., & Chen, L. C. (2005). Effects of subchronic exposures to concentrated ambient particles in mice. IX Integral assessment and human health implications of subchronic exposures of mice to CAPs. IX Integral assessment and human health implications of subchronic exposures of mice to CAPs. Inhalation Toxicology, 17, 255–261.PubMedGoogle Scholar
  107. 107.
    Habler, H. J., Janig, W., & Michaelis, M. (1994). Respiratory modulation in the activity of sympathetic neurones. Progress in Neurobiology, 43, 567–606.PubMedGoogle Scholar
  108. 108.
    Malik, M., & Camm, A. J. (1993). Components of heart rate variability—what they really mean and what we really measure. American Journal of Cardiology, 72, 821–822.PubMedGoogle Scholar
  109. 109.
    Rentero, N., Cividjian, A., Trevaks, D., Pequignot, J. M., Quintin, L., & McAllen, R. M. (2002). Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 283, R1327–R1334.Google Scholar
  110. 110.
    Tzeng, Y.-C., Galletly, D. C., & Larsen, P. D. (2005) Paradoxical respiratory sinus arrhythmia in the anesthetized rat. Autonomic Neuroscience, 118, 25–31.PubMedGoogle Scholar
  111. 111.
    Bouairi, E., Neff, R., Evans, C., Gold, A., Andresen, M. C., & Mendelowitz, D. (2004). Respiratory sinus arrhythmia in freely moving and anesthetized rats. Journal of Applied Physiology, 97, 1431–1436.PubMedGoogle Scholar
  112. 112.
    Neff, R. A., Wang, J., Baxi, S., Evans, C., & Mendelowitz, D. (2003). Respiratory sinus arrhythmia: Endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circulation Research, 93, 565–572.PubMedGoogle Scholar
  113. 113.
    Jose, A. D. (1966). Effect of combined sympathetic and parasympathetic blockade on heart rate and cardiac function in man. American Journal of Cardiology, 18, 476–478.PubMedGoogle Scholar
  114. 114.
    Wickman, K., Nemec, J., Gendler, S. J., & Clapham, D. E. (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron, 20, 103–114.PubMedGoogle Scholar
  115. 115.
    Georgakopoulos, D., & Kass, D. (2001). Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. Journal of Physiology, 534, 535–545.PubMedGoogle Scholar
  116. 116.
    Langer, S. F., Lambertz, M., Langhorst, P., & Schmidt, H.D (1999). Interbeat interval variability in isolated working rat hearts at various dynamic conditions and temperatures. Research in Experimental Medicine (Berl) 199, 1–19.Google Scholar
  117. 117.
    Bastille, A. M., Matthew, C. B., Gonzalez, R. R., Sils, I. V., & Hoyt, R. W. (2004). Application of heart rate variability to determine physiologic changes in hypothermic rats. Journal of Thermal Biology, 29, 237–243.Google Scholar
  118. 118.
    Matthew, C. B., Bastille, A. M., Gonzalez, R. R., & Sils, I. V. (2002). Heart rate variability and electrocardiogram waveform as predictors of morbidity during hypothermia and rewarming in rats Canadian Journal of Physiology and Pharmacology, 80, 925–933.PubMedGoogle Scholar
  119. 119.
    Brauer, M., Ebelt, S. T., Fisher, T. V., Brumm, J., Petkau, A. J., & Vedal, S. (2001). Exposure of chronic obstructive pulmonary disease patients to particles: Respiratory and cardiovascular health effects. Journal of Exposure Analysis and Environmental Epidemiology, 11, 490–500.PubMedGoogle Scholar
  120. 120.
    Chan, C. C., Chuang, K. J., Shiao, G. M., & Lin, L. Y. (2004) Personal exposure to submicrometer particles and heart rate variability in human subjects. Environmental Health Perspectives, 112, 1063–1067.PubMedGoogle Scholar
  121. 121.
    Chuang, K. J., Chan, C. C., Chen, N. T., Su, T. C., & Lin, L. Y. (2005). Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environmental Health Perspectives, 113, 1693–1697.PubMedGoogle Scholar
  122. 122.
    Creason, J., Neas, L., Walsh, D., Williams, R., Sheldon, L., Liao, D., & Shy, C. (2001). Particulate matter and heart rate variability among elderly retirees: the Baltimore 1998 PM study. J Expo Anal Environ Epidemiol 11, 116–122.PubMedGoogle Scholar
  123. 123.
    Devlin, R. B., Ghio, A. J., Kehrl, H., Sanders, G., & Cascio, W. (2003). Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. European Respiratory Journal Suppl, 40, 76s–80s.PubMedGoogle Scholar
  124. 124.
    Ebelt, S. T., Wilson, W. E., & Brauer, M. (2005). Exposure to ambient and nonambient components of particulate matter: A comparison of health effects. Epidemiology, 16, 396–405.PubMedGoogle Scholar
  125. 125.
    Eninger, R. M., & Rosenthal, F. S. (2004). Heart rate variability and particulate exposure in vehicle maintenance workers: A pilot study. Journal of Occupational and Environmental Hygienic, 1, 493–499.Google Scholar
  126. 126.
    Gold, D. R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., Allen, G., Verrier, M., Cherry, R., & Verrier, R. (2000). Ambient pollution and heart rate variability. Circulation, 101, 1267–1273.PubMedGoogle Scholar
  127. 127.
    Gong, H. Jr., Linn, W. S., Sioutas, C., Terrell, S. L., Clark, K. W., Anderson, K. R., & Terrell, L. L. (2003). Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhalation Toxicology, 15, 305–325.PubMedGoogle Scholar
  128. 128.
    Gong, H., Jr., Linn, W. S., Terrell, S. L., Clark, K. W., Geller, M. D., Anderson, K. R., Cascio, W. E., & Sioutas, C. (2004). Altered heart-rate variability in asthmatic and healthy volunteers exposed to concentrated ambient coarse particles. Inhalation Toxicology, 16, 335–343.PubMedGoogle Scholar
  129. 129.
    Magari, S. R., Hauser, R., Schwartz, J., Williams, P. L., Smith, T. J., & Christiani, D. C. (2001). Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation, 104, 986–991.PubMedGoogle Scholar
  130. 130.
    Magari, S. R., Schwartz, J., Williams, P. L., Hauser, R., Smith T. J., & Christiani, D. C. (2002). The association between personal measurements of environmental exposure to particulates and heart rate variability. Epidemiology, 13, 305–310.PubMedGoogle Scholar
  131. 131.
    Park, S. K., O’Neill M. S., Vokonas, P. S., Sparrow, D., & Schwartz, J. (2005). Effects of air pollution on heart rate variability: The VA normative aging study. Environmental Health Perspectives, 113, 304–309.PubMedGoogle Scholar
  132. 132.
    Pope, C. A. 3rd, Eatough, D. J., Gold, D. R., Pang, Y., Nielsen, K. R., Nath, P., Verrier, R. L., & Kanner, R. E. (2001). Acute exposure to environmental tobacco smoke and heart rate variability. Environmental Health Perspectives, 109, 711–716.PubMedGoogle Scholar
  133. 133.
    Pope, C. A. 3rd, Hansen, M. L., Long, R. W., Nielsen, K. R., Eatough, N. L., Wilson, W. E., & Eatough, D. J. (2004). Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environmental Health Perspectives, 112, 339–345.PubMedGoogle Scholar
  134. 134.
    Riediker, M., Devlin, R. B., Griggs, T. R., Herbst, M. C., Bromberg, P. A., Williams, R. W., & Cascio, W. E. (2004) Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Part Fibre Toxicology, 1, 2.Google Scholar
  135. 135.
    Riediker, M., Herbst, M. C., Devlin, R. B., Griggs, T. R., Bromberg, P. A., & Cascio, W. E. (2005). Effect of the September 11, 2001 terrorist attack on a state highway patrol trooper’s heart rate variability. Annals of Noninvasive Electrocardiology, 10, 83–85.PubMedGoogle Scholar
  136. 136.
    Riojas-Rodriguez, H., Escamilla-Cejudo, J. A., Gonzalez-Hermosillo, J. A., Tellez-Rojo, M. M., Vallejo, M., Santos-Burgoa, C., & Rojas-Bracho, L. (2006). Personal PM2.5 and CO exposures and heart rate variability in subjects with known ischemic heart disease in Mexico City. Journal of Exposure Analysis and Environmental Epidemiology, 16, 131–137.Google Scholar
  137. 137.
    Romieu, I., Tellez-Rojo, M. M., Lazo, M., Manzano-Patino, A., Cortez-Lugo, M., Julien, P., Belanger, M. C., Hernandez-Avila, M., & Holguin, F. (2005). Omega-3 fatty acid prevents heart rate variability reductions associated with particulate matter. American Journal of Respiratory and Critical Care Medicine, 172, 1534–1540.PubMedGoogle Scholar
  138. 138.
    Routledge, H. C., Manney, S., Harrison, R. M., Ayres, J. G., & Townend, J. N. (2006). Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart 92, 220–227.PubMedGoogle Scholar
  139. 139.
    Sullivan, J. H., Schreuder, A. B., Trenga, C. A., Liu, S. L., Larson, T. V., Koenig, J. Q., & Kaufman, J. D. (2005). Association between short term exposure to fine particulate matter and heart rate variability in older subjects with and without heart disease. Thorax, 60, 462–466.PubMedGoogle Scholar
  140. 140.
    Tunnicliffe, W. S., Hilton, M. F., Harrison, R. M., & Ayres, J. G. (2001). The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. European Respiratory Journal, 17, 604–608.PubMedGoogle Scholar
  141. 141.
    Vallejo, M., Ruiz, S., Hermosillo, A. G., Borja-Aburto, V. H., & Cardenas, M. (2006). Ambient fine particles modify heart rate variability in young healthy adults. Journal of Exposure Analysis and Environmental Epidemiology, 16, 125–130.Google Scholar
  142. 142.
    Wheeler, A., Zanobetti, A., Gold, D. R., Schwartz, J., Stone, P., & Suh, H. H. (2006). The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environmental Health Perspectives, 114, 560–566.PubMedCrossRefGoogle Scholar
  143. 143.
    Godleski, J. J., Verrier, R. L., Koutrakis, P., Catalano, P., Coull, B., Reinisch, U., Lovett, E. G., Lawrence, J., Murthy, G. G., Wolfson, J. M., Clarke, R. W., Nearing, B. D., & Killingsworth, C. (2000). Mechanisms of morbidity and mortality from exposure to ambient air particles. Research Report (Health Effects Institute) 5–88; discussion 89–103.Google Scholar
  144. 144.
    Lippmann, M., Hwang, J. S., Maciejczyk, P., & Chen, L. C. (2005). PM source apportionment for short-term cardiac function changes in ApoE-/- mice. Environmental Health Perspectives, 113, 1575–1579.PubMedGoogle Scholar
  145. 145.
    Nurkiewicz, T. R., Porter, D. W., Barger, M., Castranova, V., & Boegehold, M. A. (2004). Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environmental Health Perspectives, 112, 1299–1306.PubMedGoogle Scholar
  146. 146.
    Tankersley, C. G., Irizarry, R., Flanders, S. E., Rabold, R., & Frank, R. (2003). Unstable heart rate and temperature regulation predict mortality in AKR/J mice. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 284, R742–750.Google Scholar
  147. 147.
    Sun, Q., Wang, A., Jin, X., Natanzon, A., Duquaine, D., Brook R. D., Aguinaldo, J. G., Fayad, Z. A., Fuster, V., Lippmann, M., Chen, L. C., & Rajagopalan, S. (2005). Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA, 294, 3003–3010.PubMedGoogle Scholar
  148. 148.
    Huikuri, H. V., Jokinen, V., Syvanne, M., Nieminen, M. S., Airaksinen, K. E., Ikaheimo, M. J., Koistinen, J. M., Kauma, H., Kesaniemi, A. Y., Majahalme, S., Niemela, K. O., & Frick, M. H. (1999). Heart rate variability and progression of coronary atherosclerosis. Arteriosclerosis Thrombosis and Vascular Biology, 19, 1979–1985.Google Scholar
  149. 149.
    McDonald, J. D., Eide, I., Seagrave, J., Zielinska, B., Whitney K., Lawson, D. R., & Mauderly, J. L. (2004). Relationship between composition and toxicity of motor vehicle emission samples. Environmental Health Perspectives, 112, 1527–1538.PubMedGoogle Scholar
  150. 150.
    Rhoden, C. R., Wellenius, G. A., Ghelfi, E., Lawrence, J., & Gonzalez-Flecha, B. (2005). PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochimica et Biophysica Acta, 1725, 305–313.PubMedGoogle Scholar
  151. 151.
    Melin, A., Bonnet, P., Eder, V., Antier, D., Obert, P., & Fauchier, L. (2005). Direct implication of carbon monoxide in the development of heart failure in rats with cardiac hypertrophy subjected to air pollution. Cardiovascular Toxicology, 5, 311–320.PubMedGoogle Scholar
  152. 152.
    Sandercock, G. R., Bromley, P. D., & Brodie, D. A. (2005). The reliability of short-term measurements of heart rate variability. International Journal of Cardiology, 103, 238–247.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • William H. RowanIII
    • 1
  • Matthew J. Campen
    • 2
  • Lindsay B. Wichers
    • 3
  • William P. Watkinson
    • 1
  1. 1.Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentU.S. Environmental Protection AgencyNCUSA
  2. 2.Toxicology DivisionLovelace Respiratory Research InstituteAlbuquerqueUSA
  3. 3.Environmental Media Assessment Group, National Center for Environmental Assessment, Office of Research and DevelopmentU.S. Environmental Protection AgencyNorth CarolinaUSA

Personalised recommendations