Advertisement

Prospective Protective Effect of Ellagic Acid as a SIRT1 Activator in Iron Oxide Nanoparticle-Induced Renal Damage in Rats

  • 37 Accesses

Abstract

Despite the wide application of iron oxide nanoparticles (IONPs), little is known about the specific mechanism of their nephrotoxic effect. We aimed to evaluate the nephrotoxic effects of iron oxide nanoparticles (IONPs) in vivo and the protective effect of ellagic acid (EA) as a silent information regulator sirtuin 1 (SIRT1) activator against the induced nephrotoxicity. Forty male albino Wistar rats were randomly distributed into four equal groups (10 rats each): the control group (oral saline for 30 days), ellagic acid (EA) group (10 mg/kg b.w. EA, orally for 30 days), IONP group (20 mg/kg b.w. IONP I/P injection at the 24th–30th day), and EA + IONP group (10 mg/kg b.w./day EA for 30 days + 20 mg/kg b.w. IONPs at the 24th–30th day). In the present study, the potent antioxidant and antiapoptotic effects of EA were indicated by the significant overexpression of SIRT1 in renal tissues that leads to significant decreases in renal MDA content, P53 protein level and forkhead-box transcription factor1 (FOXO1) expression, and significant increases in renal GSH level, catalase activity, growth arrest and DNA damage-inducible protein 45 alpha (GADDα45), and renal inhibition of apoptosis protein (KIAP) gene expression levels in the EA + IONP-treated group. These results were confirmed by the improved histopathological renal features with EA administration. In conclusion, the present study provides the first evidence for the usefulness of EA as a sirtuin1 activator in the prevention or treatment of renal damage. Thus, EA could be used as a promising therapy for the prevention of IONP-induced nephrotoxicity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 954

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

  2. 2.

    Hagens WI, Oomen AG, de Jong WH, Casse FR, Sips AJ (2007) What do we need to know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49(3):217–229

  3. 3.

    Khanna L, Verma NK, Tripathi SK (2018) Burgeoning tool of biomedical applications superparamagnetic nanoparticles. Alloys Compd 752:332–353. https://doi.org/10.1016/j.jallcom.2018.04.093

  4. 4.

    Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L (2018) Shape, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8:3284–3307. https://doi.org/10.7150/thno.25220

  5. 5.

    Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ (2019) A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 14:1633–1657

  6. 6.

    El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 13:953–971

  7. 7.

    Dadfar SM, Roemhild K, Drude NI, Von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

  8. 8.

    Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials 12:617. https://doi.org/10.3390/ma12040617

  9. 9.

    Pinel S, Thomas N, Boura C, Barberi-Heyob M (2019) Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv Drug Deliv Rev 138:344–357

  10. 10.

    Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M (2013) Different biokinetics of nanomedicines linking to their toxicity; an overview. Daru J Pharm Sci 21(1):14

  11. 11.

    Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132. https://doi.org/10.1016/j.chemosphere.2011.01.025

  12. 12.

    Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9–10):1533–1545

  13. 13.

    Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247(2–3):102–111

  14. 14.

    Ponka P (1999) Cellular iron metabolism. Kidney Int 69:S2–S11

  15. 15.

    Missaoui WN, Arnold RD, Cummings BS (2018) Toxicological status of nanoparticles: what we know and what we don’t know. Chem Biol Interact. https://doi.org/10.1016/j.cbi.2018.07.015

  16. 16.

    Poormoosavi SM, Najafzadehvarzi H, Behmanesh MA, Amirgholami R (2018) Protective effects of asparagus officinalis extract against bisphenol a- induced toxicity in Wistar rats. Toxicol Rep 5:427–433. https://doi.org/10.1016/j.toxrep.2018.02.010

  17. 17.

    Nagy G, Benko I, Kiraly G, Voros O, Tanczos B, Sztrik A (2015) Cellular and nephrotoxicity of selenium species. J Trace Elem Med Biol 30:160–170

  18. 18.

    Simko M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42. https://doi.org/10.1186/1743-8977-7-42

  19. 19.

    Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM (2019) Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ Sci Pollut Res:1–16. https://doi.org/10.1007/s11356-019-05514-2

  20. 20.

    Mohammed ET, Safwat GM (2019) Grape seed Proanthocyanidin extract mitigates titanium dioxide nanoparticle (TiO2-NPs)–induced hepatotoxicity through TLR-4/NF-κB signaling pathway. Biol Trace Elem Res:1–11. https://doi.org/10.1007/s12011-019-01955-5

  21. 21.

    Wu X, Tan Y, Mao H, Zhang M (2010) Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine 5:385–399. https://doi.org/10.2147/IJN.S10458

  22. 22.

    Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25:1402–1411. https://doi.org/10.1021/tx200513t

  23. 23.

    Soong YY, Barlow PJ (2006) Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem 97:524–530

  24. 24.

    Hassoun EA, Vodhanel J, Abushaban A (2004) The modulatory effects of ellagic acid and vitamin E succinate on TCDD-induced oxidative stress in different brain regions of rats after subchronic exposure. J Biochem Mol Toxicol 18:196–203

  25. 25.

    Priyadarsini K, Khopde S, Kumar S, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50:2200–2206

  26. 26.

    Fujimura L, Matsudo Y, Kang M, Takamori Y, Tokuhisa T, Hatano M (2004) Protective role of Nd1 in doxorubicin-induced cardiotoxicity. Cardiovasc Res 64:315–321

  27. 27.

    Singh K, Khanna AK, Chander R (1999) Hepatoprotective activity of ellagic acid against carbon tetrachloride induced hepatotoxicity in rats. Indian J Exp Biol 37:1025–1026

  28. 28.

    Sepúlveda L, Ascacio A, Rodriguez-Herrera R, Aguilera-Carbó A, Aguilar CN (2011) Ellagic acid: biological properties and biotecnological development for production processes. Afr J Biotechnol 10(22):4518–4523

  29. 29.

    Türk G, Çeribaşi AO, Sahna E, Ateşşahin A (2011) Lycopene and ellagic acid prevent testicular apoptosis induced by cisplatin. Phytomedicine 18(5):356–361

  30. 30.

    Palani S, Santhakumari D, Balachandar S, Ambika S (2015) Protective role of ellagic acid in modulating iron induced nephrotoxicity in rats. Int J Adv Res Biol Sci 2(8):35–42

  31. 31.

    Pari L, Sivasankari R (2008) Effect of ellagic acid on cyclosporineA-induced oxidative damage in the liver of rats. Fundam Clin Pharmacol 22(4):395–401

  32. 32.

    Horio Y, Hayashi T, Kuno A, Kunimoto R (2011) Cellular and molecular effects of sirtuins in health and disease. Clin Sci 121:191–203

  33. 33.

    Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

  34. 34.

    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

  35. 35.

    Yun JM, Chien A, Jialal I, Devaraj S (2012) Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: mechanistic insights. J Nutr Biochem 23(7):699–705. https://doi.org/10.1016/j.jnutbio.2011.03.012

  36. 36.

    Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

  37. 37.

    Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24(50):7410–7425

  38. 38.

    Gusev AI, Kurlov AS (2008) Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology 19(26):265302. https://doi.org/10.1088/0957-4484/19/26/265302

  39. 39.

    Celik G, Semiz A, Karakurt S, Arslan S, Adali O, Sen A (2013) A comparative study for the evaluation of two doses of ellagic acid on hepatic drug metabolizing and antioxidant enzymes in the rat. Biomed Res Int 358945. https://doi.org/10.1155/2013/358945

  40. 40.

    Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809–4818. https://doi.org/10.2147/IJN.S34349

  41. 41.

    Šebeková K, Dušinská M, Simon Klenovics K, Kollárová R, Boor P, Kebis A, Staruchová M, Vlková B, Celec P, Hodosy J, Bačiak L, Tušková R, Beňo M, Tulinská J, Príbojová J, Bilaničová D, Pojana G, Marcomini A, Volkovová K (2014) Comprehensive assessment of nephrotoxicity of intravenously administered sodium-oleate-coated ultrasmall superparamagnetic iron oxide (USPIO) and titanium dioxide (TiO2) nanoparticles in rats. Nanotoxicology 8(2):142–157. https://doi.org/10.3109/17435390.2012.763147

  42. 42.

    Tietz NW, Finley P, Pruden E, Amerson A (1990) Clinical guide to laboratory tests. Saunders, Philadelphia, pp 232–233

  43. 43.

    Young DS (2001) Effects of drugs on clinical lab tests, 4th edn. AACC

  44. 44.

    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

  45. 45.

    Albro PW, Corbett JT, Schroeder JL (1986) Application of the thiobarbiturate assay to the measurement of lipid peroxidation products in microsomes. J Biochem Biophys Methods 13:185–194

  46. 46.

    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

  47. 47.

    Livak KJ, Thomas S (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 25:402–408

  48. 48.

    Bancroft JD, Gamble M (2002) Theory and practice of histological techniques, 5th edn. Churchill Livingstone Pub., Edinburgh, pp 172–175 pp 593-620

  49. 49.

    Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B (2010) Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79:113–116. https://doi.org/10.1016/jchemosphere2009:12.056

  50. 50.

    McNamara K, Tofail SAM (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17(42):27981–27995

  51. 51.

    Wilhelma C, Billoteya C, Rogerc JN, Bacria J, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

  52. 52.

    Cruz DN, Fard A, Clementi A, Ronco C, Maisel A (2012) Role of biomarkers in the diagnosis and management of cardio-renal syndromes. Semin Nephrol 32:79–92

  53. 53.

    Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, L'Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10

  54. 54.

    Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

  55. 55.

    Liu Y, Chen Z, Wang J (2011) Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. J Nanopart Res 13:199–212

  56. 56.

    Chew DJ, DiBartola SP (1989) Diagnosis and pathophysiology of renal disease. In: Ettinger SJ (ed) Textbook of veterinary internal medicine. W.B. Saunders Company, Philadelphia, pp 1893–1961

  57. 57.

    Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine 6:787–794

  58. 58.

    Atessahín A, Çeríbaßi AO, Yuce A, Bulmus O, Çikim G (2007) Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats. Basic Clin Pharmacol Toxicol 100:121–126. https://doi.org/10.1111/j.1742-7843.2006.00015.x

  59. 59.

    El-Garhy AM, Abd El-Raouf OM, El-Sayeh BM, Fawzy HM, Abdallah DM (2014) Ellagic acid antiinflammatory and antiapoptotic potential mediate renoprotection in cisplatin nephrotoxic rats. J Biochem Mol Toxicol 10:472–479. https://doi.org/10.1002/jbt.21587

  60. 60.

    Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Ellagic acid, an NF-kB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 219:64–75

  61. 61.

    Sk UH, Bhattacharya S (2006) Prevention of cadmium induced lipid peroxidation, depletion of some antioxidative enzymes and glutathione by a series of novel organoselenocyanates. Environ Toxicol Pharmacol 22:298–230

  62. 62.

    Durairaj A, Vaiyapuri TS, Kanti MU (2008) Protective activity and antioxidant potential of Lippia nodiflora extract in paracetamol induced hepatotoxicity in rats. Iran J Pharmacol Ther 7:83–89

  63. 63.

    Gaharwar US, Paulraj R (2015) Iron oxide nanoparticles induced oxidative damage in peripheral blood cells of rat. J Biomed Sci Eng 8:274–286

  64. 64.

    Samal NK, Paulraj R (2010) Modulatory role of magnetic iron oxide nanoparticles on oxidative stress in rat. J Bionanosci 4:22–28. https://doi.org/10.1166/jbns.2010.1021

  65. 65.

    Ahamed M, Alhadlaq HA, Alam J, Khan MA, Ali D, Alarafi S (2013) Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des 19:6681–6690

  66. 66.

    Warpe VS, Mali VR, Arulmozhi S, Bodhankar SL, Mahadik KR (2015) Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. J Acute Med 5:1–8

  67. 67.

    Kaur R, Parveen S, Mehan S, Khanna D, Kalra S (2015) Neuroprotective effect of ellagic acid against chronically scopolamine induced Alzheimer’s type memory and cognitive dysfunctions: possible behavioural and biochemical evidences 1(2):45–64

  68. 68.

    Iino T, Nakahara K, Miki W (2001) Less damaging effect of whisky in rat stomachs in comparison with pure ethanol. Role of ellagic acid, the nonalcoholic component. Digestion 64:214–221

  69. 69.

    Finkel SE, Kolter R (1999) Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A:4023–4027

  70. 70.

    Imai S (2009) Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des 15:20–28

  71. 71.

    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380

  72. 72.

    Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39

  73. 73.

    Satoh N, Maniwa Y, Bermudez VP, Nishimura K, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Hurwitz J, Hayashi Y (2011) Oncogenic phosphatase Wip1 is a novel prognostic marker for lung adenocarcinoma patient survival. Cancer Sci 102(5):1101–1106. https://doi.org/10.1111/j.1349-7006.2011.01898.x

  74. 74.

    Ogawa T, Wakai C, Saito T, Murayama A, Mimura Y, Youfu S (2011) Distribution of the longevity gene product, SIRT1, in developing mouse organs. Congenit Anom (Kyoto) 51:70–79. https://doi.org/10.1111/j.1741-4520.2010.00304.x

  75. 75.

    Grubisha LC, Kretzer AM, Bruns TD (2005) Isolation and characterization of microsatellite loci from the truffle-like ectomycorrhizal fungi Rhizopogon occidentalis and Rhizopogon vulgaris. Mol Ecol Notes 5:608–610

  76. 76.

    Dong YJ, Liu N, Xiao Z, Sun T, Wu SH, Sun WX (2014) Renal protective effect of sirtuin 1. J Diabetes 843786:8. https://doi.org/10.1155/2014/843786

  77. 77.

    Tikoo K, Tripathi DN, Kabra DG, Sharma V, Gaikwad AB (2007) Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS Lett 581:1071–1078

  78. 78.

    de Kreutzenberg SV, Ceolotto G, Papparella I, Bortoluzzi A, Semplicini A, Dalla Man C, Cobelli C, Fadini GP, Avogaro A (2010) Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 59(4):1006–1015. https://doi.org/10.2337/db09-1187

  79. 79.

    Deng L, Kakihara T, Fukuda R, Ohta A (2007) Isolation and characterization of a mutant defective in utilization of exogenous phosphatidylethanolamine in Saccharomyces cerevisiae. J Gen Appl Microbiol 53(4):255–258

  80. 80.

    Hori T, Shang WH, Takeuchi K, Fukagawa T (2013) The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 200:45–60

  81. 81.

    Achanta G, Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res 64:6233–6239

  82. 82.

    Vousden KH (2000) p53: death star. Cell 101:691–694

  83. 83.

    Lu H, Huang H (2011) FOXO1: a potential target for human diseases. Curr Drug Targets 12(9):1235–1244

  84. 84.

    Wang Y, Zhou Y, Graves DT (2014) FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014:925350. https://doi.org/10.1155/2014/925350

  85. 85.

    Zhan Q (2005) Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res 569(1–2):133–143

  86. 86.

    Hollander MC, Sheikh MS, Bulavin D, Lundren K, Augeri-Henmueller L, Shehee R, Molinaro T, Kim K, Tolosa E, Ashwell JD (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184

  87. 87.

    Wingert S, Frederic BT, Nadine H, Maike R, Timm S, Michael AR (2016) DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival. Stem Cells 34:699–710

  88. 88.

    Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schäfer A, Grummt I, Mayer C (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33:344–353

  89. 89.

    Li D, Dai C, Zhou Y, Yang X, Zhao K, Xiao X, Tang S (2016) Effect of GADD45a on olaquindox-induced apoptosis in human hepatoma G2 cells: involvement of mitochondrial dysfunction. Environ Toxicol Pharmacol 46:140–146. https://doi.org/10.1016/j.etap.2016.07.012

  90. 90.

    Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

  91. 91.

    Hildesheim A, Wang SS (2002) Host and viral genetics and risk of cervical cancer. Virus Res 89(2):229–240

  92. 92.

    Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, Motoyama N (2005) SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 16(2):237–243

  93. 93.

    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

  94. 94.

    Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118. https://doi.org/10.1016/j.toxlet.2009.03.014

  95. 95.

    Wagener N, Crnković-Mertens I, Vetter C, Macher-Göppinger S, Bedke J, Gröne EF, Hoppe-Seyler F (2007) Expression of inhibitor of apoptosis protein Livin in renal cell carcinoma and non-tumorous adult kidney. Br J Cancer 97(9):1271–1276. https://doi.org/10.1038/sj.bjc.6604028

  96. 96.

    Lin JH, Deng G, Huang Q, Morser J (2000) KIAP, a novel member of the inhibitor of apoptosis protein family 279:820–831

  97. 97.

    Crnkovic-Mertens I, Hoppe-Seyler F, Butz K (2003) Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene 22(51):8330–8336

  98. 98.

    Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521

Download references

Acknowledgments

The authors thank all staff members of the Biochemistry and Histology departments, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, for their help and advice.

Author information

Correspondence to Eman Taha Mohammed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammed, E.T., Hashem, K.S., Abdelazem, A.Z. et al. Prospective Protective Effect of Ellagic Acid as a SIRT1 Activator in Iron Oxide Nanoparticle-Induced Renal Damage in Rats. Biol Trace Elem Res (2020). https://doi.org/10.1007/s12011-020-02034-w

Download citation

Keywords

  • Ellagic acid
  • Iron oxide nanoparticles
  • SIRT1
  • FOXO1
  • KIAP
  • Nephrotoxicity