Advertisement

Selenium Levels in Community Dwellers with Type 2 Diabetes Mellitus

  • Qianqian Zhang
  • Wenxia Li
  • Jian Wang
  • Biyue Hu
  • Hang Yun
  • Renmei Guo
  • Li WangEmail author
Article
  • 19 Downloads

Abstract

Selenium (Se) is an essential micronutrient required by the human body and exerts biological functions through selenoproteins. The relationship between Se and diabetes remains ambiguous. This study aimed at, through measurements of serum selenoprotein P (SelP), glutathione peroxidase (GPx3), and Se content in serum and hair, evaluating Se levels in community dwellers with type 2 diabetes mellitus (T2DM). A total of 336 subjects, including 176 T2DM patients (65.5 ± 8.7 years old) and 160 healthy residents (63.7 ± 9.8 years old, as controls), were recruited in this cross-sectional community-based study performed in Suzhou. Samples of fasting venous blood and hair were collected for measurements of Se levels, glycometabolism, and biochemistry parameters. We found that the serum Se level and SelP concentration in T2DM patients were substantially higher than those in healthy residents (p < 0.05). There was no significant difference in GPx3 activity and hair Se level between the two groups of subjects (p > 0.05). Serum Se was positively correlated with both GPx3 and hair Se in T2DM patients (r = 0.167 and 0.164, respectively, p < 0.05) and negatively correlated with SelP in healthy controls (r = − 0.293, p < 0.05). In conclusion, this study showed significantly higher levels of serum Se and SelP in community dwellers with T2DM than in matched healthy residents.

Keywords

Diabetes mellitus, type 2 Selenium Selenoprotein P Glutathione peroxidase 

Notes

Acknowledgements

We would like to thank all volunteers who participated in this study for their effort and time.

Authorship of All the Authors

Li Wang designed this study and wrote the final draft of the paper; Qianqian Zhang, Wenxia Li, Biyue Hu, and Hang Yun performed the experiments and analyzed the data; and Qianqian Zhang wrote the first draft of the paper. Jian Wang and Renmei Guo recruited volunteers and performed blood and hair sample selenium test. All authors critically reviewed the manuscript and approved the final version submitted for publication.

Funding

This work was funded by the Startup Foundation for Talents of Soochow University (Q412700114).

Compliance with Ethical Standards

All participants were fully informed about the research purpose and characteristics before they provided signed consent. Ethical approval was granted from the Ethics Committee of Soochow University (ECSU-201700044). This study conformed to the standards of the Declaration of Helsinki and was registered with Chinese Clinical Trial Registry (ChiCTR-IOR-17013645).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Grosicka-Maciąg E, Szumiło M, Kurpios-Piec D, Rahden-Staroń I (2017) Biomedical effects of selenium in a human organism. J Elem 22(4):1269–1284.  https://doi.org/10.5601/jelem.2017.22.1.1357 CrossRefGoogle Scholar
  2. 2.
    Deagen JT, Butler JA, Zachara BA, Whanger PD (1993) Determination of the distribution of selenium between glutathione peroxidase, selenoprotein P, and albumin in plasma. Anal Biochem 208(1):176–181CrossRefGoogle Scholar
  3. 3.
    Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790(11):1441–1447.  https://doi.org/10.1016/j.bbagen.2009.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54.  https://doi.org/10.1039/c3mt00185g CrossRefPubMedGoogle Scholar
  5. 5.
    Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E (2009) Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Environ Health Perspect 117(9):1409–1413.  https://doi.org/10.1289/ehp.0900704 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, Qin L, Su Q (2017) Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol 40:91–96.  https://doi.org/10.1016/j.jtemb.2016.12.017 CrossRefPubMedGoogle Scholar
  7. 7.
    Badran M, Morsy R, Soliman H, Elnimr T (2016) Assessment of trace elements levels in patients with type 2 diabetes using multivariate statistical analysis. J Trace Elem Med Biol 33:114–119.  https://doi.org/10.1016/j.jtemb.2015.10.006 CrossRefPubMedGoogle Scholar
  8. 8.
    Durak R, Gulen Y, Kurudirek M, Kacal M, Capoglu I (2010) Determination of trace element levels in human blood serum from patients with type II diabetes using WDXRF technique: a comparative study. J Xray Sci Technol 18(2):111–120.  https://doi.org/10.3233/XST-2010-0247 CrossRefPubMedGoogle Scholar
  9. 9.
    Othman FB, Mohamed HJBJ, Sirajudeen KNS, Noh MFBM, Rajab NF (2017) The influence of selenium status on body composition, oxidative DNA damage and total antioxidant capacity in newly diagnosed type 2 diabetes mellitus: a case-control study. J Trace Elem Med Biol 43:106–112.  https://doi.org/10.1016/j.jtemb.2016.12.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58(3):391–402.  https://doi.org/10.1038/sj.ejcn.1601800 CrossRefPubMedGoogle Scholar
  11. 11.
    Fatani SH, Saleh SA, Adly HM, Abdulkhaliq AA (2016) Trace element alterations in the hair of diabetic and obese women. Biol Trace Elem Res 174(1):32–39.  https://doi.org/10.1007/s12011-016-0691-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Thomson CD (2004) Selenium and iodine intakes and status in New Zealand and Australia. Br J Nutr 91(5):661–672.  https://doi.org/10.1079/BJN20041110 CrossRefPubMedGoogle Scholar
  13. 13.
    Yang SJ, Hwang SY, Choi HY, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2011) Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: implications for insulin resistance, inflammation, and atherosclerosis. J Clin Endocrinol Metab 96(8):E1325–E1329.  https://doi.org/10.1210/jc.2011-0620 CrossRefPubMedGoogle Scholar
  14. 14.
    Gonzalez de Vega R, Fernandez-Sanchez ML, Fernandez JC, Alvarez Menendez FV, Sanz-Medel A (2016) Selenium levels and glutathione peroxidase activity in the plasma of patients with type II diabetes mellitus. J Trace Elem Med Biol 37:44–49.  https://doi.org/10.1016/j.jtemb.2016.06.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Du RS, Yu YJ, Xiao WM (2017) Correlation between serum zinc, selenium, chromium, copper and blood glucose levels in type 2 diabetes patients. Int J Lab Med 38(8):1059–1063 (In Chinese)Google Scholar
  16. 16.
    Kornhauser C, Garcia-Ramirez JR, Wrobel K, Perez-Luque EL, Garay-Sevilla ME, Wrobel K (2008) Serum selenium and glutathione peroxidase concentrations in type 2 diabetes mellitus patients. Prim Care Diabetes 2(2):81–85.  https://doi.org/10.1016/j.pcd.2008.02.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Garcia-Fontana B, Morales-Santana S, Longobardo V, Reyes-Garcia R, Rozas-Moreno P, Garcia-Salcedo JA, Munoz-Torres M (2015) Relationship between proinflammatory and antioxidant proteins with the severity of cardiovascular disease in type 2 diabetes mellitus. Int J Mol Sci 16(5):9469–9483.  https://doi.org/10.3390/ijms16059469 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tan J, Zhu W, Wang W, Li R, Hou S, Wang D, Yang L (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284(1–3):227–235CrossRefGoogle Scholar
  19. 19.
    Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100(2):254–268.  https://doi.org/10.1017/S0007114508939830 CrossRefPubMedGoogle Scholar
  20. 20.
    Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D (2018) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112:294–309.  https://doi.org/10.1016/j.envint.2017.12.035 CrossRefPubMedGoogle Scholar
  21. 21.
    Mei ZQ (1985) Two high selenium areas found in China. Chin J Endemiol 4(4):379–388 (In Chinese)Google Scholar
  22. 22.
    Gao J, Liu Y, Huang Y, Z-q L, Bañuelos GS, Lam MH-W, Yin X (2011) Daily selenium intake in a moderate selenium deficiency area of Suzhou, China. Food Chem 126(3):1088–1093.  https://doi.org/10.1016/j.foodchem.2010.11.137 CrossRefGoogle Scholar
  23. 23.
    Mueller AS, Mueller K, Wolf NM, Pallauf J (2009) Selenium and diabetes: an enigma? Free Radic Res 43(11):1029–1059.  https://doi.org/10.1080/10715760903196925 CrossRefPubMedGoogle Scholar
  24. 24.
    Ezaki O (1990) The insulin-like effects of selenate in rat adipocytes. J Biol Chem 265(2):1124–1128PubMedGoogle Scholar
  25. 25.
    Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN (2011) Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 14(12):2327–2336.  https://doi.org/10.1089/ars.2010.3526 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zeng MS, Li X, Liu Y, Zhao H, Zhou JC, Li K, Huang JQ, Sun LH, Tang JY, Xia XJ, Wang KN, Lei XG (2012) A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med 52(8):1335–1342.  https://doi.org/10.1016/j.freeradbiomed.2012.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rasekh HR, Potmis RA, Nonavinakere VK, Early JL, Iszard MB (1991) Effect of selenium on plasma glucose of rats: role of insulin and glucocorticoids. Toxicol Lett 58(2):199–207CrossRefGoogle Scholar
  28. 28.
    Asare GA, Osae S, Nortey ENN, Yambire FK, Amedonu E, Doku D, Annan Y (2013) Evaluation of serum metallothionein-1, selenium, zinc, and copper in Ghanaian type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 33(2):86–95.  https://doi.org/10.1007/s13410-013-0111-9 CrossRefGoogle Scholar
  29. 29.
    Wang XL, Yang TB, Wei J, Lei GH, Zeng C (2016) Association between serum selenium level and type 2 diabetes mellitus: a non-linear dose-response meta-analysis of observational studies. Nutr J 15(1):48.  https://doi.org/10.1186/s12937-016-0169-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Akbaraly TN, Arnaud J, Rayman MP, Hininger-Favier I, Roussel AM, Berr C, Fontbonne A (2010) Plasma selenium and risk of dysglycemia in an elderly French population: results from the prospective epidemiology of vascular ageing study. Nutr Metab (Lond) 7(21):21CrossRefGoogle Scholar
  31. 31.
    Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268.  https://doi.org/10.1016/s0140-6736(11)61452-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Faghihi T, Radfar M, Barmal M, Amini P, Qorbani M, Abdollahi M, Larijani B (2014) A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile. Am J Ther 21(6):491–495CrossRefGoogle Scholar
  33. 33.
    Hill KE, Wu S, Motley AK, Stevenson TD, Winfrey VP, Capecchi MR, Atkins JF, Burk RF (2012) Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem 287(48):40414–40424.  https://doi.org/10.1074/jbc.M112.421404 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, Ishikura K, Ando H, Takeshita Y, Ota T, Sakurai M, Yamashita T, Mizukoshi E, Yamashita T, Honda M, Miyamoto K, Kubota T, Kubota N, Kadowaki T, Kim HJ, Lee IK, Minokoshi Y, Saito Y, Takahashi K, Yamada Y, Takakura N, Kaneko S (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12(5):483–495.  https://doi.org/10.1016/j.cmet.2010.09.015 CrossRefPubMedGoogle Scholar
  35. 35.
    Steinbrenner H, Hotze AL, Speckmann B, Pinto A, Sies H, Schott M, Ehlers M, Scherbaum WA, Schinner S (2013) Localization and regulation of pancreatic selenoprotein P. J Mol Endocrinol 50(1):31–42.  https://doi.org/10.1530/JME-12-0105 CrossRefPubMedGoogle Scholar
  36. 36.
    Pan JM, Yu HY, Zhang L, Han JF, Bao YQ, Jia WP (2014) Selenoprotein P in type 2 diabetes mellitus and its association with insulin resistance. Natl Med J China 94(22):1710–1713 (In Chinese)Google Scholar
  37. 37.
    Shetty S, Marsicano JR, Copeland PR (2018) Uptake and utilization of selenium from selenoprotein P. Biol Trace Elem Res 181(1):54–61.  https://doi.org/10.1007/s12011-017-1044-9 CrossRefPubMedGoogle Scholar
  38. 38.
    Malinouski M, Kehr S, Finney L, Vogt S, Carlson BA, Seravalli J, Jin R, Handy DE, Park TJ, Loscalzo J, Hatfield DL, Gladyshev VN (2012) High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3. Antioxid Redox Signal 16(3):185–192.  https://doi.org/10.1089/ars.2011.3997 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590CrossRefGoogle Scholar
  40. 40.
    Roman M, Lapolla A, Jitaru P, Sechi A, Cosma C, Cozzi G, Cescon P, Barbante C (2010) Plasma selenoproteins concentrations in type 2 diabetes mellitus-a pilot study. Transl Res 156(4):242–250.  https://doi.org/10.1016/j.trsl.2010.07.006 CrossRefPubMedGoogle Scholar
  41. 41.
    Gawlik K, Naskalski JW, Fedak D, Pawlica-Gosiewska D, Grudzien U, Dumnicka P, Malecki MT, Solnica B (2016) Markers of antioxidant defense in patients with type 2 diabetes. Oxidative Med Cell Longev 2016:2352361.  https://doi.org/10.1155/2016/2352361 CrossRefGoogle Scholar
  42. 42.
    Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P) H oxidase and endothelial nitric oxide synthase. Circulation 105(14):1656–1662.  https://doi.org/10.1161/01.cir.0000012748.58444.08 CrossRefPubMedGoogle Scholar
  43. 43.
    Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK, Austin LM, Deal J, Cohen HJ, Burk RF (2010) Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Renal Physiol 298(5):F1244–F1253.  https://doi.org/10.1152/ajprenal.00662.2009 CrossRefPubMedGoogle Scholar
  44. 44.
    Yang Y, Wei W, Tai LX, Zhu GH, Niu CL (2008) Determination of trace element selenium in hair of patients with diabetes from Chuxiong district by 2,3-2-naphthylamine. Guangdong Trace Elements Sci 15(11):16–18 (In Chinese)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Nursing, Medical CollegeSoochow UniversitySuzhouChina
  2. 2.Research CenterSoochow Setek Biotechnology Co., LtdSuzhouChina

Personalised recommendations