Glutathione Might Attenuate Cadmium-Induced Liver Oxidative Stress and Hepatic Stellate Cell Activation

  • Longfei Ren
  • Kuo Qi
  • Lei Zhang
  • Zhongtian Bai
  • Chenghui Ren
  • Xianyun Xu
  • Zeliang Zhang
  • Xun LiEmail author


The liver is a major organ involved in cadmium (Cd)-induced oxidative damage. Following liver injury, hepatic stellate cells (HSCs) are activated to participate in the wound healing process, but also facilitate liver fibrosis. Previous studies have observed fibrogenic effects of Cd on liver. However, the oxidative stress mechanisms of Cd-induced HSC activation as well as whether administration of glutathione (GSH) alleviates this activation, remain unclear. In this study, 24 rats were divided randomly into four experimental groups: control, GSH-treated, Cd-treated, and Cd + GSH-treated. After 4 weeks, the liver injury index, HSC-specific activation markers, oxidative stress-related antioxidants, and enzyme activities and signals were measured. Cd uptake and the generation of reactive oxygen species (ROS) in hepatocytes were detected by mass cytometry and fluorescence microscopy, respectively. Levels of aspartate aminotransferase, xanthine oxidase, γ-glutamyl transpeptidase, and α-smooth muscle actin (αSMA) were significantly increased in Cd-treated rats. Activated HSCs positive for αSMA expression and excess collagen deposition were detected in the Cd-treated group. In contrast, activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were reduced. Supplementation with GSH reversed some of the Cd-induced effects and increased the protein level of phosphorylated (p)-P65 while decreasing p-JNK. Pretreatment with GSH lowered Cd uptake and ROS generation in hepatocytes in vitro. These results indicate that administration of GSH was effective in attenuating Cd-induced oxidative stress via decreasing Cd uptake, restoring the activities of oxidative enzymes, activating NF-κB, inhibiting the JNK signaling pathway, and preventing excessive ROS generation and HSC activation.


Cadmium Glutathione Oxidative stress Hepatic stellate cell activation 


Author Contributions

Xun Li, Longfei Ren, and Lei Zhang conceived and designed the experiments; Longfei Ren, Zhongtian Bai, Kuo Qi, Chenghui Ren, Zeliang Zhang, and Xianyun Xu performed research; Longfei Ren and Kuo Qi analyzed the data; Xun Li, Longfei Ren, and Lei Zhang wrote the manuscript. All authors discussed the results and commented the manuscript.

Funding Information

This study was supported by the grants from the National Natural Science Foundation of China (No. 31570509 and No. 31270543) and research funding of 1st hospital of Lanzhou University (No. ldyyyn2017-23).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12011_2019_1641_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 95 kb)
12011_2019_1641_Fig7_ESM.png (645 kb)

(PNG 645 kb)

12011_2019_1641_MOESM2_ESM.tif (70.4 mb)
High resolution image (TIF 72107 kb)


  1. 1.
    Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. CrossRefPubMedGoogle Scholar
  2. 2.
    Rikans LEYT (2000) Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol 14:110–117CrossRefGoogle Scholar
  3. 3.
    Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940. CrossRefPubMedGoogle Scholar
  4. 4.
    Kamiyama T, Miyakawa H, Li JP, Akiba T, Liu JH, Liu J, Marumo F, Sato C (1995) Effects of one-year cadmium exposure on livers and kidneys and their relation to glutathione levels. Res Commun Mol Pathol Pharmacol 88(2):177–186PubMedGoogle Scholar
  5. 5.
    Baba H, Tsuneyama K, Yazaki M, Nagata K, Minamisaka T, Tsuda T, Nomoto K, Hayashi S, Miwa S, Nakajima T, Nakanishi Y, Aoshima K, Imura J (2013) The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Mod Pathol 26(9):1228–1234. CrossRefPubMedGoogle Scholar
  6. 6.
    Kazi TG, Kolachi NF, Afridi HI, Kazi NG, Sirajuddin N, Arain SS (2012) Effects of mineral supplementation on liver cirrhotic/cancer male patients. Biol Trace Elem Res 150(1–3):81–90. CrossRefPubMedGoogle Scholar
  7. 7.
    Kolachi NF, Kazi TG, Afridi HI, Kazi NG, Khan S (2012) Investigation of essential trace and toxic elements in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and after mineral supplementation. Clin Nutr 31(6):967–973. CrossRefPubMedGoogle Scholar
  8. 8.
    Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456. CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang CY, Yuan WG, He P, Lei JH, Wang CX (2016) Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol 22(48):10512–10522. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu X, Xu J, Brenner DA, Kisseleva T (2013) Reversibility of liver fibrosis and inactivation of fibrogenic myofibroblasts. Curr Pathobiol Rep 1(3):209–214. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    El-Mansy AA, Mazroa SA, Hamed WS, Yaseen AH, El-Mohandes EA (2016) Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity. Biotech Histochem 91(3):170–181. CrossRefPubMedGoogle Scholar
  12. 12.
    del Carmen EM, Souza V, Bucio L, Hernandez E, Damian-Matsumura P, Zaga V, Gutierrez-Ruiz MC (2002) Cadmium induces alpha(1)collagen (I) and metallothionein II gene and alters the antioxidant system in rat hepatic stellate cells. Toxicology 170(1–2):63–73CrossRefGoogle Scholar
  13. 13.
    Souza V, Escobar Mdel C, Bucio L, Hernandez E, Gutierrez-Ruiz MC (2004) Zinc pretreatment prevents hepatic stellate cells from cadmium-produced oxidative damage. Cell Biol Toxicol 20(4):241–251CrossRefGoogle Scholar
  14. 14.
    Matovic V, Buha A, Ethukic-Cosic D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140. CrossRefPubMedGoogle Scholar
  15. 15.
    Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411. CrossRefPubMedGoogle Scholar
  16. 16.
    Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30(1–2):1–12. CrossRefGoogle Scholar
  17. 17.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153. CrossRefPubMedGoogle Scholar
  18. 18.
    Rana SV, Verma S (1996) Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats. Biol Trace Elem Res 51(2):161–168. CrossRefPubMedGoogle Scholar
  19. 19.
    Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115. CrossRefPubMedGoogle Scholar
  20. 20.
    Thevenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238(3):221–239. CrossRefPubMedGoogle Scholar
  21. 21.
    Thevenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang H, Li L, Wang Y, Dong F, Chen X, Liu F, Xu D, Yi F, Kapron CM, Liu J (2016) NF-kappaB signaling maintains the survival of cadmium-exposed human renal glomerular endothelial cells. Int J Mol Med 38(2):417–422. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89(6):867–882. CrossRefPubMedGoogle Scholar
  24. 24.
    Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165(4):780–791. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ghatak S, Biswas A, Dhali GK, Chowdhury A, Boyer JL, Santra A (2011) Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol Appl Pharmacol 251(1):59–69. CrossRefPubMedGoogle Scholar
  26. 26.
    Franca MER, Rocha SWS, Oliveira WH, Santos LA, de Oliveira AGV, Barbosa KPS, Nunes AKS, Rodrigues GB, Los DB, Peixoto CA (2018) Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology 26(2):599–609. CrossRefPubMedGoogle Scholar
  27. 27.
    Vomund S, Schafer A, Parnham MJ, Brune B, von Knethen A (2017) Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18(12).
  28. 28.
    Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu MY, Wang P, Sun YJ, Wu YJ (2017) Metabolomic analysis for combined hepatotoxicity of chlorpyrifos and cadmium in rats. Toxicology 384:50–58. CrossRefPubMedGoogle Scholar
  30. 30.
    Zou H, Liu X, Han T, Hu D, Yuan Y, Gu J, Bian J, Liu Z (2015) Alpha-lipoic acid protects against cadmium-induced hepatotoxicity via calcium signalling and gap junctional intercellular communication in rat hepatocytes. J Toxicol Sci 40(4):469–477. CrossRefPubMedGoogle Scholar
  31. 31.
    Oyinloye BE, Adenowo AF, Osunsanmi FO, Ogunyinka BI, Nwozo SO, Kappo AP (2016) Aqueous extract of Monodora myristica ameliorates cadmium-induced hepatotoxicity in male rats. SpringerPlus 5:641. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jumarie C, Fortin C, Houde M, Campbell PG, Denizeau F (2001) Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins. Toxicol Appl Pharmacol 170(1):29–38. CrossRefPubMedGoogle Scholar
  33. 33.
    Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87. CrossRefPubMedGoogle Scholar
  34. 34.
    Prystupa A, Blazewicz A, Kicinski P, Sak JJ, Niedzialek J, Zaluska W (2016) Serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis from the Lublin Region in Eastern Poland. Int J Environ Res Public Health 13(6).
  35. 35.
    Hu X, Fernandes J, Jones DP, Go YM (2017) Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. Toxicology 383:50–56. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li FJ, Surolia R, Li H, Wang Z, Liu G, Liu RM, Mirov SB, Athar M, Thannickal VJ, Antony VB (2017) Low dose cadmium exposure induces peribronchiolar fibrosis through site specific phosphorylation of vimentin. Am J Physiol Lung Cell Mol Physiol 313:L80–L91. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Thijssen S, Lambrichts I, Maringwa J, Van Kerkhove E (2007) Changes in expression of fibrotic markers and histopathological alterations in kidneys of mice chronically exposed to low and high Cd doses. Toxicology 238(2–3):200–210. CrossRefPubMedGoogle Scholar
  38. 38.
    Cupertino MC, Costa KL, Santos DC, Novaes RD, Condessa SS, Neves AC, Oliveira JA, Matta SL (2013) Long-lasting morphofunctional remodelling of liver parenchyma and stroma after a single exposure to low and moderate doses of cadmium in rats. Int J Exp Pathol 94(5):343–351. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37. CrossRefPubMedGoogle Scholar
  40. 40.
    Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238(3):209–214. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shukla GS, Hussain T, Srivastava RS, Chandra SV (1989) Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. Ind Health 27(2):59–69CrossRefGoogle Scholar
  42. 42.
    Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207. CrossRefPubMedGoogle Scholar
  43. 43.
    Olalekan Lawal A, Lawal AF, Ologundudu A, Adeniran OY, Omonkhua A, Obi F (2011) Antioxidant effects of heated garlic juice on cadmium-induced liver damage in rats as compared to ascorbic acid. J Toxicol Sci 36(5):549–557CrossRefGoogle Scholar
  44. 44.
    Zhang C, Lin J, Ge J, Wang LL, Li N, Sun XT, Cao HB, Li JL (2017) Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol in Vitro 44:349–356. CrossRefPubMedGoogle Scholar
  45. 45.
    Nemmiche S (2017) Oxidative signaling response to cadmium exposure. Toxicol Sci 156(1):4–10. CrossRefPubMedGoogle Scholar
  46. 46.
    Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26(3):203–234. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, Chiu JF (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133(1):43–58CrossRefGoogle Scholar
  48. 48.
    Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 16(4):651–662PubMedGoogle Scholar
  49. 49.
    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252CrossRefGoogle Scholar
  50. 50.
    Chen X, Li J, Cheng Z, Xu Y, Wang X, Li X, Xu D, Kapron CM, Liu J (2016) Low dose cadmium inhibits proliferation of human renal mesangial cells via activation of the JNK pathway. Int J Environ Res Public Health 13(10).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Longfei Ren
    • 1
  • Kuo Qi
    • 2
  • Lei Zhang
    • 1
    • 3
  • Zhongtian Bai
    • 1
    • 2
  • Chenghui Ren
    • 1
  • Xianyun Xu
    • 1
  • Zeliang Zhang
    • 1
  • Xun Li
    • 1
    • 2
    • 3
    Email author
  1. 1.The First Clinical Medical College, Lanzhou University; The Fifth Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.Key Laboratory of Biotherapy and Regenerative Medicine of Gansu ProvinceLanzhouPeople’s Republic of China
  3. 3.Hepatopancreatobiliary Surgery Institute of Gansu ProvinceMedical College Cancer Center of Lanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations