Advertisement

Nanometals in Dentistry: Applications and Toxicological Implications—a Systematic Review

  • Rupali Agnihotri
  • Sumit GaurEmail author
  • Sacharia Albin
Article

Abstract

Nanotechnology is a vital part of health care system, including the dentistry. This branch of technology has been incorporated into various fields of dentistry ranging from diagnosis to prevention and treatment. The latter involves application of numerous biomaterials that help in restoration of esthetic and functional dentition. Over the past decade, these materials were modified through the incorporation of metal nanoparticles (NP) like silver (Ag), gold (Au), titanium (Ti), zinc (Zn), copper (Cu), and zirconia (Zr). They enhanced antimicrobial, mechanical, and regenerative properties of these materials. However, lately, the toxicological implications of these nanometal particles have been realized. They were associated with cytotoxicity, genotoxicity altered inflammatory processes, and reticuloendothelial system toxicity. As dental biomaterials containing metal NPs remain functional in oral cavity over prolonged periods, it is important to know their toxicological effects in humans. With this background, the present systematic review is aimed to gain an insight into the plausible applications and toxic implications of nano-metal particles as related to dentistry.

Keywords

Antimicrobial Dentistry Nanotechnology Nanometals Toxicity 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Slokar L, Pranjić J, Carek A (2017) Metallic materials for use in dentistry. The holistic approach to environment 7:39–58Google Scholar
  2. 2.
    Gettleman L (1991) Noble alloys in dentistry. Curr Opin Dent 1:218–221PubMedPubMedCentralGoogle Scholar
  3. 3.
    Schmalz G, Hickel R, van Landuyt KL, Reichl FX (2017) Nanoparticles in dentistry. Dent Mater 33:1298–1314.  https://doi.org/10.1016/j.dental.2017.08.193 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Govindankutty D (2015) Applications of nanotechnology in orthodontics and its future. Inter J App Dent Sci 1:166–171Google Scholar
  5. 5.
    Al-Nafori MK, Elshal MG, Refai WM (2017) The effect of incorporating gold and silver nanoparticles in orthodontic adhesive system on bond strength of orthodontic bracket. EC Dental Science 11:119–131Google Scholar
  6. 6.
    Felemban NH, Ebrahim MI (2017) The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health 17:1–8.  https://doi.org/10.1186/s12903-017-0332-2 CrossRefGoogle Scholar
  7. 7.
    Ramazanzadeh B, Jahanbin A, Yaghoubi M, Shahtahmassbi N, Ghazvini K, Shakeri M, Shafaee H (2015) Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against streptococcus mutans. J Dent (Shiraz) 16:200–205Google Scholar
  8. 8.
    Redlich M, Katz A, Rapoport L, Wagner HD, Feldman Y, Tenne R (2008) Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS(2) impregnated in electroless nickel-phosphorous film. Dent Mater 24:1640–1646.  https://doi.org/10.1016/j.dental.2008.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353.  https://doi.org/10.1088/0957-4484/16/10/059 CrossRefPubMedGoogle Scholar
  10. 10.
    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Lett 7:219–242.  https://doi.org/10.1007/s40820-015-0040-x CrossRefGoogle Scholar
  11. 11.
    Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. NanoToday 6:585–607.  https://doi.org/10.1016/j.nantod.2011.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Faria AC, Rodrigues RC, Antunes RP, de Mattos MG, Rosa AL, Ribeiro RF (2009) Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium. J Appl Oral Sci 17:421–426.  https://doi.org/10.1590/S1678-77572009000500013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chaturvedi TP1, Upadhayay SN (2010) An overview of orthodontic material degradation in oral cavity. Indian J Dent Res 21:275-284.https:// doi:  https://doi.org/10.4103/0970-9290.66648.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218–4244.  https://doi.org/10.1039/c6cs00636a CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Besinis A, De Peralta T, Tredwin CJ, Handy RD (2015) Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 9:2255-2289. https:// doi:  https://doi.org/10.1021/nn505015e.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HH (2013) Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater 29:462–472.  https://doi.org/10.1016/j.dental.2013.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, Bai Y, Xu HH (2013) Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent 41:464–474.  https://doi.org/10.1016/j.jdent.2013.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rad MS, Kompany A, Zak AK, Javidi M, Mortazavi SM (2013) Microleakage and antibacterial properties of ZnO and ZnO: Ag nanopowders prepared via a sol–gel method for endodontic sealer application. J Nano Res.  https://doi.org/10.1007/s11051-013-1925-6
  19. 19.
    Dugal S, Chakraborty S (2014) Application of nanosilver for prevention of recurrent dental caries in patients suffering from xerostomia. Int J Pharm Pharm Sci 6:101–104Google Scholar
  20. 20.
    Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z (2014) Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod 39:109–114.  https://doi.org/10.5395/rde.2014.39.2.109 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Javidi M, Zarei M, Naghavi N, Mortazavi M, Nejat AH (2014) Zinc oxide nano-particles as sealer in endodontics and its sealing ability. Contemp Clin Dent 5:20–24.  https://doi.org/10.4103/0976-237X.128656 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Aguiar AS, Guerreiro-Tanomaru JM, Faria G, Leonardo RT, Tanomaru-Filho M (2015) Antimicrobial activity and pH of calcium hydroxide and zinc oxide nanoparticles intracanal medication and association with chlorhexidine. J Contemp Dent Pract 16:624–629PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H (2015) Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J Appl Oral Sci 23:321–328.  https://doi.org/10.1590/1678-775720140496 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cheng L, Zhang K, Zhou CC, Weir MD, Zhou XD, Xu HH (2016) One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci 8:172–181.  https://doi.org/10.1038/ijos.2016.13 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Teymoornezhad K, Alaghehmand H, Daryakenari G, Khafri S, Tabari M (2016) Evaluating the microshear bond strength and microleakage of flowable composites containing zinc oxide nano-particles. Electron Physician 8:3289–3295.  https://doi.org/10.19082/3289 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Afkhami F, Pourhashemi SJ, Sadegh M, Salehi Y, Fard MJ (2015) Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent 43:1573–1579.  https://doi.org/10.1016/j.jdent.2015.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ibrahim MA, Meera Priyadarshini B, Neo J, Fawzy AS (2017) Characterization of chitosan/TiO2 nano-powder modified glass-ionomer cement for restorative dental applications. J Esthet Restor Dent 29:146–156.  https://doi.org/10.1111/jerd.12282 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nozari A, Ajami S, Rafiei A, Niazi E (2017) Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: an in vitro study. J Clin Diagn Res.  https://doi.org/10.7860/JCDR/2017/30108.10694
  29. 29.
    Scarpelli BB, Punhagui MF, Hoeppner MG, Almeida RSC, Juliani FA, Guiraldo RD, Berger SB (2017) In vitro evaluation of the remineralizing potential and antimicrobial activity of a cariostatic agent with silver nanoparticles. Braz Dent J 28:738–743.  https://doi.org/10.1590/0103-6440201701365 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Paiva L, Fidalgo TKS, da Costa LP, Maia LC, Balan L, Anselme K, Ploux L, Thiré RMSM (2018) Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J Dent 69:102–109.  https://doi.org/10.1016/j.jdent.2017.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK (2018) Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine 14:35–45.  https://doi.org/10.1016/j.nano.2017.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Santos VE Jr, Vasconcelos Filho A, Targino AG, Flores MA, Galembeck A, Caldas AF Jr, Rosenblatt A (2014) A new “silver-bullet” to treat caries in children—nano silver fluoride: a randomized clinical trial. J Dent 42:945–951.  https://doi.org/10.1016/j.jdent.2014.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ghorbanzadeh R, Pourakbari B, Bahador A (2015) Effects of baseplates of orthodontic appliances with in situ generated silver nanoparticles on cariogenic bacteria: a randomized, double-blind cross-over clinical trial. J Contemp Dent Pract 16:291–298PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Freire PLL, Albuquerque AJR, Sampaio FC, Galembeck A, Flores MAP, Stamford TCM, Rosenblatt A (2017) AgNPs: the new allies against S mutans biofilm – a pilot clinical trial and microbiological assay. Braz Dent J 28:417–422.  https://doi.org/10.1590/0103-6440201600994 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tirupathi S, Svsg N, Rajasekhar S, Nuvvula S (2019) Comparative cariostatic efficacy of a novel nano-silver fluoride varnish with 38% silver diamine fluoride varnish a double-blind randomized clinical trial. J Clin Exp Dent.  https://doi.org/10.4317/jced.54995
  36. 36.
    Silva GF, Bosso R, Ferino RV, Tanomaru-Filho M, Bernardi MI, Guerreiro-Tanomaru JM, Cerri PS (2014) Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: evaluation of physicochemical and biological properties. J Biomed Mater Res A 102:4336–4345.  https://doi.org/10.1002/jbm.a.35099 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Silva GF, Guerreiro-Tanomaru JM, da Fonseca TS, Bernardi MIB, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS (2017) Zirconium oxide and niobium oxide used as radiopacifiers in a calcium silicate-based material stimulate fibroblast proliferation and collagen formation. Int Endod J.  https://doi.org/10.1111/iej.12789 PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Suganya S, Ahila SC, Kumar BM, Kumar MV (2014) Evaluation and comparison of anti-Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: an in vitro study. Indian J Dent Res 5:204-207. https:// doi:  https://doi.org/10.4103/0970-9290.135923.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ghaffari T, Hamedi-Rad F (2015) Effect of silver nano-particles on tensile strength of acrylic resins. J Dent Res Dent Clin Dent Prospects 9:40-43. https:// doi: https://doi.org/10.15171/joddd.2015.008.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li Z, Sun J, Lan J, Qi Q (2016) Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology 33:209–216.  https://doi.org/10.1111/ger.12142 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sodagar A, Khalil S, Kassaee MZ, Shahroudi AS, Pourakbari B, Bahador A (2016) Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J Orthod Sci 5:7–13.  https://doi.org/10.4103/2278-0203.176652 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A (2016) The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int J Dent.  https://doi.org/10.1155/2016/7094056 CrossRefGoogle Scholar
  43. 43.
    Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS (2016) Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine 11:5633–5643.  https://doi.org/10.2147/IJN.S120054 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM (2017) Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing - the fututre in dental care for elderly edentulous patients? J Dent 59:68–77.  https://doi.org/10.1016/j.jdent.2017.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Alhavaz A, Rezaei Dastjerdi M, Ghasemi A, Ghasemi A, Alizadeh Sahraei A (2017) Effect of untreated zirconium oxide nanofiller on the flexural strength and surface hardness of autopolymerized interim fixed restoration resins. J Esthet Restor Dent 29:264–269.  https://doi.org/10.1111/jerd.12300 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Elias CN, dos Santos HES, Garbossa M, dos Santos C (2017) Mechanical properties of zirconia Y-TZP core veneered for dentistry applications. J Ceram Sci Technol 8:525–530.  https://doi.org/10.4416/JCST2017-00032 CrossRefGoogle Scholar
  47. 47.
    Ergun G, Sahin Z, Ataol AS (2018) The effects of adding various ratios of zirconium oxide nanoparticles to poly (methyl methacrylate) on physical and mechanical properties. J Oral Sci 60:304–315.  https://doi.org/10.2334/josnusd.17-0206 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S (2018) Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine 13:283–292.  https://doi.org/10.2147/IJN.S152571 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Darwish G, Huang S, Knoernschild K, Sukotjo C, Campbell S, Bishal AK, Barão VA, Wu CD, Taukodis CG, Yang B (2019) Improving polymethyl methacrylate resin using a novel titanium dioxide coating. J Prosthodont.  https://doi.org/10.1111/jopr.13032
  50. 50.
    Gad MM, Al-Thobity AM, Rahoma A, Abualsaud R, Al-Harbi FA, Akhtar S (2019) Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int J Dent.  https://doi.org/10.1155/2019/2489393 CrossRefGoogle Scholar
  51. 51.
    Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716.  https://doi.org/10.1016/j.biomaterials.2011.04.040 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fröjd V, Linderbäck P, Wennerberg A, Chávez de Paz L, Svensäter G, Davies JR (2011) Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation. BMC Oral Health 11:1–9.  https://doi.org/10.1186/1472-6831-11-8 CrossRefGoogle Scholar
  53. 53.
    Huang HH, Chen JY, Lin MC, Wang YT, Lee TL, Chen LK (2012) Blood responses to titanium surface with TiO2 nano-mesh structure. Clin Oral Implants Res 23:379–383.  https://doi.org/10.1111/j.1600-0501.2010.02152.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Matsubara VH, Igai F, Tamaki R, Tortamano Neto P, Nakamae AE, Mori M (2015) Use of silver nanoparticles reduces internal contamination of external hexagon implants by Candida albicans. Braz Dent J 26:458–462.  https://doi.org/10.1590/0103-644020130087 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Abdulkareem EH, Memarzadeh K, Allaker RP, Huang J, Pratten J, Spratt D (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent 43:1462–1469.  https://doi.org/10.1016/j.jdent.2015.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Memarzadeh K, Sharili AS, Huang J, Rawlinson SC, Allaker RP (2015) Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A 103:981–989.  https://doi.org/10.1002/jbm.a.35241 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, Um SH, Lee JH, Woo YH, Zhang LG, Lee DW, Kwon IK (2016) Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci 469:129–137.  https://doi.org/10.1016/j.jcis.2016.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Toodehzaeim MH, Zandi H, Meshkani H, Hosseinzadeh Firouzabadi A (2018) The effect of CuO nanoparticles on antimicrobial effects and shear bond strength of orthodontic adhesives. J Dent (Shiraz) 19:1–5Google Scholar
  59. 59.
    Fernandes GL, Delbem ACB, do Amaral JG, Gorup LF, Fernandes RA, de Souza Neto FN, JAS S, Monteiro DR, AMA H, Camargo ER, Barbosa DB (2018) Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics (Basel).  https://doi.org/10.3390/antibiotics7030052 PubMedCentralCrossRefGoogle Scholar
  60. 60.
    Teixeira JA, Silva AVCE, Dos Santos Júnior VE, de Melo Júnior PC, Arnaud M, Lima MG, Flores MAP, Stamford TCM, Dias Pereira JR, Ribeiro Targino AG, Galembeck A, Rosenblatt A (2018) Effects of a new nano-silver fluoride-containing dentifrice on demineralization of enamel and Streptococcus mutans adhesion and acidogenicity. Int J Dent.  https://doi.org/10.1155/2018/1351925 CrossRefGoogle Scholar
  61. 61.
    Toledano-Osorio M, Osorio E, Aguilera FS, Luis Medina-Castillo A, Toledano M, Osorio R (2018) Improved reactive nanoparticles to treat dentin hypersensitivity. Acta Biomater 72:371–380.  https://doi.org/10.1016/j.actbio.2018.03.033 CrossRefPubMedGoogle Scholar
  62. 62.
    Heravi F, Ramezani M, Poosti M, Hosseini M, Shajiei A, Ahrari F (2013) In vitro cytotoxicity assessment of an orthodontic composite containing titanium-dioxide nano-particles. J Dent Res Dent Clin Dent Prospects 7:192–198.  https://doi.org/10.5681/joddd.2013.031 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H (2014) Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells. In Vivo 28:895–907PubMedGoogle Scholar
  64. 64.
    Chan EL, Zhang C, Cheung GS (2015) Cytotoxicity of a novel nano-silver particle endodontic irrigant. Clin Cosmet Investig Dent 7:65–74.  https://doi.org/10.2147/CCIDE.S68874 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zand V, Lotfi M, Aghbali A, Mesgariabbasi M, Janani M, Mokhtari H, Tehranchi P, Pakdel SM (2016) Tissue reaction and biocompatibility of implanted mineral trioxide aggregate with silver nanoparticles in a rat model. Iran Endod J 11:13–16.  https://doi.org/10.7508/iej.2016.01.003 CrossRefPubMedGoogle Scholar
  66. 66.
    Akay C, Cevik P, Karakis D, Sevim H (2018) In vitro cytotoxicity of maxillofacial silicone elastomers: effect of nano-particles. J Prosthodont 27:584–587.  https://doi.org/10.1111/jopr.12533 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Laiteerapong A, Reichl FX, Hickel R, Högg C (2019) Effect of eluates from zirconia-modified glass ionomer cements on DNA double-stranded breaks in human gingival fibroblast cells. Dent Mater 35:444–449.  https://doi.org/10.1016/j.dental.2019.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chan KHS, Mai Y, Kim H, Tong KCT, Ng D, JCM H (2010) Review: resin composite filling. Materials 3:1228–1243.  https://doi.org/10.3390/ma3021228 CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhang N, Melo MAS, Weir MD, Reynolds MA, Bai Y, Xu HHK (2016) Do dental resin composites accumulate more oral biofilms and plaque than amalgam and glass ionomer materials? Materials.  https://doi.org/10.3390/ma9110888 PubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nair PN, Henry S, Cano V, Vera J (2005) Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:231–252.  https://doi.org/10.1016/j.tripleo.2004.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Verran J, Maryan CJ (1997) Retention of Candida albicans on acrylic resin and silicone of different surface topography. J Prosthet Dent 77:535–539PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Neppelenbroek KH (2015) The importance of daily removal of the denture biofilm for oral and systemic diseases prevention. J Appl Oral Sci 23:547–548.  https://doi.org/10.1590/1678-77572015ed006 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gowd MS, Shankar T, Ranjan R, Singh A (2017) Prosthetic consideration in implant-supported prosthesis: a review of literature. J Int Soc Prev Community Dent.  https://doi.org/10.4103/jispcd.JISPCD_149_17 CrossRefGoogle Scholar
  74. 74.
    Oshida Y, Tuna EB, Aktören O, Gençay K (2010) Dental implant systems. Int J Mol Sci 11:1580–1678.  https://doi.org/10.3390/ijms11041580 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mackevica A, Olsson ME, Hansen SF (2017) The release of silver nanoparticles from commercial toothbrushes. J Hazard Mater 322(Pt A):270–275.  https://doi.org/10.1016/j.jhazmat.2016.03.067 CrossRefGoogle Scholar
  76. 76.
    AlKahtani RN (2018) The implications and applications of nanotechnology in dentistry: a review. Saudi Dent J 30:107–116.  https://doi.org/10.1016/j.sdentj.2018.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) 'Green' synthesis of metals and their oxide their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology 16:1–24.  https://doi.org/10.1186/s12951-018-0408-4 CrossRefGoogle Scholar
  78. 78.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627.  https://doi.org/10.1126/science.1114397 CrossRefPubMedGoogle Scholar
  79. 79.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. https:// doi: https://doi.org/10.1039/b502142c.PubMedCrossRefGoogle Scholar
  80. 80.
    Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298.  https://doi.org/10.1103/PhysRevA.13.2287 CrossRefGoogle Scholar
  81. 81.
    Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size and shape dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials (Basel).  https://doi.org/10.3390/nano6040074 CrossRefGoogle Scholar
  82. 82.
    Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.01831
  83. 83.
    Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145.  https://doi.org/10.1016/j.jconrel.2011.07.002 CrossRefPubMedGoogle Scholar
  84. 84.
    Hernández-Sierra JF, Galicia-Cruz O, Angélica SA, Ruiz F, Pierdant-Pérez M, Pozos-Guillén AJ (2011) In vitro cytotoxicity of silver nanoparticles on human periodontal fibroblasts. J Clin Pediatr Dent 36:37–41PubMedCrossRefGoogle Scholar
  85. 85.
    Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337.  https://doi.org/10.1002/smll.201200772 CrossRefPubMedGoogle Scholar
  86. 86.
    Siddiqi KS, Ur Rahman A, Tajuddin HA (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141.  https://doi.org/10.1186/s11671-018-2532-3 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Han Y, Kiat-amnuay S, Powers JM, Zhao Y (2008) Effect of nano-oxide concentration on the mechanical properties of a max-illofacial silicone elastomer. J Prosthet Dent 100:465–473.  https://doi.org/10.1016/s0022-3913(08)60266-8 CrossRefPubMedGoogle Scholar
  88. 88.
    Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nano composites: a review. Compos Sci Technol 69:2392–2409.  https://doi.org/10.1016/j.compscitech.2009.06.020 CrossRefGoogle Scholar
  89. 89.
    Ahmed MA, Ebrahim MI (2014) Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World Journal of Nano Science and Engineering 4:50–57.  https://doi.org/10.4236/wjnse.2014.42008 CrossRefGoogle Scholar
  90. 90.
    Camilleri J (2007) Hydration mechanisms of mineral trioxide aggregate. Int Endod J 40:462–470. https:// doi:  https://doi.org/10.1111/j.1365-2591.2007.01248.x PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Min KS, Kim HI, Park HJ, Pi SH, Hong CU, Kim EC (2007) Human pulp cells response to Portland cement in vitro. J Endod 33:163– 166. https:// doi:  https://doi.org/10.1016/j.joen.2006.07.022.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Elsaka SE, Hamouda IM, Swain MV (2011) Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent 39:589–598.  https://doi.org/10.1016/j.jdent.2011.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Elshahawy W, Watanabe I (2014) Biocompatibility of dental alloys used in dental fixed prosthodontics. Tanta Dental Journal.  https://doi.org/10.1016/j.tdj.2014.07.005.CrossRefGoogle Scholar
  94. 94.
    Saifi MA, Khan W, Godugu C (2018) Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharm Nanotechnol 6:3–16.  https://doi.org/10.2174/2211738505666171023152928 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS (2018) Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials (Basel).  https://doi.org/10.3390/nano8090634 PubMedCentralCrossRefGoogle Scholar
  96. 96.
    Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Impact of nanoparticles on brain health: an up to date overview. J Clin Med 7:490.  https://doi.org/10.3390/jcm7120490 CrossRefPubMedCentralGoogle Scholar
  97. 97.
    Haase A, Rott S, Mantion A, Graf P, Plendl J, Thünemann AF, Meier WP, Taubert A, Luch A, Reiser G (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126:457–468.  https://doi.org/10.1093/toxsci/kfs003 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Liu F, Mahmood M, Xu Y, Watanabe F, Biris AS, Hansen DK, ,Inselman A, Casciano D,Patterson TA, Paule MG, Slikker W Jr, Wang C (2015) Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front Neurosci:  https://doi.org/10.3389/fnins.2015.00115.
  99. 99.
    Greish K, Alqahtani AA, Alotaibi AF, Abdulla AM, Bukelly AT, Alsobyani FM, Alharbi GH, Alkiyumi IS, Aldawish MM, Alshahrani TF, Pittalà V, Taurin S, Kamal (2019) The effect of silver nanoparticles on learning, memory and social interaction in BALB/C Mice. Int J Environ Res Public Health:  https://doi.org/10.3390/ijerph16010148.PubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol.  https://doi.org/10.1186/1743-8977-6-14 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Taju G, Abdul Majeed S, Nambi KS, Sahul Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 161:41–52.  https://doi.org/10.1016/j.cbpc.2014.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60:648–652PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10-20. https:// doi: https://doi.org/10.1159/000096167.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318.  https://doi.org/10.1016/j.taap.2009.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cellsexposed to ZnO nanoparticles. Nanoscale Res Lett 7:602.  https://doi.org/10.1186/1556-276X-7-602 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129:170–180.  https://doi.org/10.1007/s12011-008-8285-6 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638.  https://doi.org/10.1016/j.biomaterials.2012.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X, Zhao Y (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:577–588.  https://doi.org/10.1080/10934529.2012.650576 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Valamina IE, Makeyev OH, Sutunkova MP, Minigalieva IA, Kireyeva EP, Rusakov VO, Tyurnina AE, Kozin RV, Meshtcheryakova EY, Korotkov AV, Shuman EA, Zvereva AE, Kostykova SV (2014) Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci 15:12379–12406.  https://doi.org/10.3390/ijms150712379 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Demir E, Burgucu D, Turna F, Aksakal S, Kaya B (2013) Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J Toxicol Environ Health A 76:990–1002.  https://doi.org/10.1080/15287394.2013.830584 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, Chen L, Xu L (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One.  https://doi.org/10.1371/journal.pone.0185554 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 11:673–692.  https://doi.org/10.2217/nnm.16.5 CrossRefGoogle Scholar
  113. 113.
    Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55:283–291.  https://doi.org/10.3349/ymj.2014.55.2.283 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.  https://doi.org/10.1289/ehp.7339 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–7555.  https://doi.org/10.1016/j.biomaterials.2012.06.076 CrossRefPubMedGoogle Scholar
  116. 116.
    Yang EJ, Kim S, Kim JS, Choi IH (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33:6858–6867.  https://doi.org/10.1016/j.biomaterials.2012.06.016 CrossRefPubMedGoogle Scholar
  117. 117.
    Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y (2003) Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J Biochem 134:43-49. https:// doi: https://doi.org/10.1093/jb/mvg111.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100.  https://doi.org/10.1016/j.toxlet.2008.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25:1402–1411.  https://doi.org/10.1021/tx200513t CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750.  https://doi.org/10.1007/s00204-010-0545-5 CrossRefPubMedGoogle Scholar
  121. 121.
    Kim KT, Zaikova T, Hutchison JE, Tanguay RL (2013) Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133:275–288.  https://doi.org/10.1093/toxsci/kft081 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Valentini X, Absil L, Laurent G, Robbe A, Laurent S, Muller R, Legrand A, Nonclercq D (2017) Toxicity of TiO2 nanoparticles on the NRK52E renal cell line. Mol Cell Toxicol 13:419–431.  https://doi.org/10.1007/s13273-017-0046-1 CrossRefGoogle Scholar
  123. 123.
    Huang YW, Wu CH, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials (Basel) 3:4842–4859.  https://doi.org/10.3390/ma3104842 CrossRefGoogle Scholar
  124. 124.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40.  https://doi.org/10.1016/j.cbi.2005.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Zhao X, Rao Y, Liang J, Lin S, Wang X, Li Z, Huang J (2019) Silver nanoparticle-induced phosphorylation of Histone H3 at serine 10 involves MAPK pathways. Biomolecules.  https://doi.org/10.3390/biom9020078 PubMedCentralCrossRefPubMedGoogle Scholar
  126. 126.
    Zhang J, Qin X, Wang B, Xu G, Qin Z, Wang J, Wu L, Ju X, Bose DD, Qiu F, Zhou H, Zou Z (2017) Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis 8.  https://doi.org/10.1038/cddis.2017.337 CrossRefGoogle Scholar
  127. 127.
    Vinluan RD 3rd, Zheng J (2015) Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond) 10:2781–2794.  https://doi.org/10.2217/nnm.15.97 CrossRefGoogle Scholar
  128. 128.
    Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW (2016) Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348.  https://doi.org/10.1016/j.jconrel.2016.01.020 CrossRefPubMedGoogle Scholar
  129. 129.
    Hadjikhani A, Rodzinski A, Wang P, Nagesetti A, Guduru R, Liang P, Runowicz C, Shahbazmohamadi S, Khizroev S (2017) Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomedicine (Lond) 12:1801–1822.  https://doi.org/10.2217/nnm-2017-0080 CrossRefGoogle Scholar
  130. 130.
    Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96.  https://doi.org/10.1021/nn700256c CrossRefPubMedGoogle Scholar
  131. 131.
    Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.  https://doi.org/10.1146/annurev-bioeng-071811-150124 CrossRefGoogle Scholar
  132. 132.
    Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13:44.  https://doi.org/10.1186/s11671-018-2457-x CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJ, Rivera Gil P, Montenegro JM, Braeckmans K, Müllen K, Nienhaus GU, Klapper M, Parak WJ (2013) Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7:3253–3263.  https://doi.org/10.1021/nn3059295 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and bio distribution of polymeric nanoparticles. Mol Pharm 5:505–515.  https://doi.org/10.1021/mp800051m CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Zhang Y, Kohler N, Zhang M (2002) Surface modification of super paramagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561.  https://doi.org/10.1016/S0142-9612(01)00267-8 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Cheyne RW, Smith TA, Trembleau L, McLaughlin AC (2011) Synthesis and characterisation of biologically compatible TiO2 nanoparticles. Nanoscale Res Lett 6:423.  https://doi.org/10.1186/1556-276X-6-423 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Lee YK, Choi E-J, Webster TJ, Kim S-H, Khang D (2014) Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomedicine 10:97–113.  https://doi.org/10.2147/IJN.S72998 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H (2013) Gold nanoparticles as a vaccine platform : influence of shape and size on immunological responses in vitro and in vivo. ACS Nano 7:3926-3938. https:// doi:  https://doi.org/10.1021/nn3057005.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Kim J, Park Y, Lee S, Seo J, Kwon D, Park J, Yoon TH, Choi K (2013) Effects of size, impurities, and citrate capping on the toxicity of manufactured silver nano-particles to larval zebrafish (Danio rerio). J Environ Health Sci 39:369–375.  https://doi.org/10.5668/JEHS.2013.39.4.369 CrossRefGoogle Scholar
  140. 140.
    Larsen ST, Jackson P, Poulsen SS, Levin M, Jensen KA, Wallin H, Nielsen GD, Koponen IK (2016) Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles. Nanotoxicology 10:1254–1262.  https://doi.org/10.1080/17435390.2016.1202350 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Schmalz G, Hickel R, van Landuyt KL, Reichl FX (2018) Scientific update on nanoparticles in dentistry. Int Dent J 68:299-305. https:// doi:  https://doi.org/10.1111/idj.12394.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    George GN, Singh SP, Hoover J, Pickering IJ (2009) The chemical forms of mercury in aged and fresh dental amalgam surfaces. Chem Res Toxicol, 22:1761–1764.  https://doi.org/10.1021/tx900309c PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Siddharth R, Gautam R, Chand P, Agrawal KK, Singh RD, Singh BP (2015) Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: an in vivo study. J Indian Prosthodont Soc 15:206–210.  https://doi.org/10.4103/0972-4052.164906 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Van Landuyt KL, Yoshihara K, Geebelen B, Peumans M, Godderis L, Hoet P, Van Meerbeek B (2012) Should we be concerned about composite (nano-) dust? Dent Mater 28:1162–1170.  https://doi.org/10.1016/j.dental.2012.08.011 CrossRefPubMedGoogle Scholar
  145. 145.
    Van Landuyt KL, Hellack B, Van Meerbeek B, Peumans M, Hoet P, Wiemann M, Kuhlbusch TA, Asbach C (2014) Nanoparticle release from dental composites. Acta Biomater 10:365–374.  https://doi.org/10.1016/j.actbio.2013.09.044 CrossRefPubMedGoogle Scholar
  146. 146.
    Heintze SD (2006) How to qualify and validate wear simulation devices and methods. Dent Mater 22: 712–734. https:// doi:  https://doi.org/10.1016/j.dental.2006.02.002.PubMedCrossRefGoogle Scholar
  147. 147.
    Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol.  https://doi.org/10.1186/1743-8977-10-15 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Franchi M, Bacchelli B, Martini D, Pasquale VD, Orsini E, Ottani V, Fini M, Giavaresi G, Giardino R, Ruggeri A (2004) Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 25:2239–2246PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Flatebø RS, Høl PJ, Leknes KN, Kosler J, Lie SA, Gjerdet NR (2011) Mapping of titanium particles in peri-implant oral mucosa by laser ablation inductively coupled plasma mass spectrometry and high-resolution optical darkfield microscopy. J Oral Pathol Med 40: 412–420. https:// doi: https://doi.org/10.1111/j.1600-0714.2010.00958.x.CrossRefGoogle Scholar
  150. 150.
    Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282.  https://doi.org/10.2106/00004623-199802000-00015 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    He X, Reichl FX, Wang Y, Michalke B, Milz S, Yang Y, Stolper P, Lindemaier G, Graw M, Hickel R, Högg C (2016) Analysis of titanium and other metals in human jawbones with dental implants - a case series study. Dent Mater 32:1042–1051.  https://doi.org/10.1016/j.dental.2016.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Gosau M, Haupt M, Thude S, Strowitzki M, Schminke B, Buergers R (2016) Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings. J Biomed Mater Res B Appl Biomater 104:1571–1579.  https://doi.org/10.1002/jbm.b.33376 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185.  https://doi.org/10.1016/j.toxlet.2006.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Fung MC, Bowen DL (1996) Silver products for medical indications: risk-benefit assessment. J Toxicol Clin Toxicol 34:119–126PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L (2015) Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 10:3547–3565.  https://doi.org/10.2147/IJN.S79892 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Kim KT, Lee JY, Kim DD, Yoon IS, Cho HJ (2019) Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics.  https://doi.org/10.3390/pharmaceutics11060280 PubMedCentralCrossRefGoogle Scholar
  157. 157.
    Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, Liao YP, Xia T, Li R (2017) Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part Fibre Toxicol 14:13.  https://doi.org/10.1186/s12989-017-0193-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Periodontology, Manipal College of Dental SciencesManipal Academy of Higher Education (MAHE)ManipalIndia
  2. 2.Department of Pedodontics and Preventive Dentistry, Manipal College of Dental SciencesManipal Academy of Higher Education (MAHE)ManipalIndia
  3. 3.Engineering DepartmentNorfolk State UniversityNorfolkUSA

Personalised recommendations