Advertisement

Grape Seed Proanthocyanidin Extract Mitigates Titanium Dioxide Nanoparticle (TiO2-NPs)–Induced Hepatotoxicity Through TLR-4/NF-κB Signaling Pathway

  • Eman T. MohammedEmail author
  • Ghada M. Safwat
Article
  • 33 Downloads

Abstract

With the progress of nanotechnology, the adverse effects of nanoscale materials are receiving much attention. Inhibition of toll-like receptor 4 (TLR-4)/nuclear factor kappa B (NF-κB) signaling is a hallmark for downregulating the expression of many inflammatory genes implicated in oxidative stress. Therefore, the present study aimed to demonstrate the influence of grape seed proanthocyanidin extract (GSE) on the hepatic TLR-4/ NF-κB signaling pathway in TiO2-NP-induced liver damage in rats. Forty male Albino rats were divided into 4 groups (n = 10): G1 was used as a control, G2 received TiO2-NPs (500 mg/kg/day orally) from the 17th to 30th day (acute toxicity), G3 received GSE (75 mg/kg/day orally) for 30 days, and G4 pre- and co-treated with GSE (for 30 days) and TiO2-NPs (from the 17th to 30th day), with the aforementioned doses. TiO2-NPs induced severe hepatic injury that was indicated by biochemical alterations in serum liver markers (acetylcholinesterase, ALT, ALP, total proteins, albumin, and direct bilirubin), oxidative stress indicators (MDA, GSH, and catalase), and histopathological alterations as well. Moreover, TiO2-NPs triggered an inflammatory response via the upregulation of TLR-4, NF-κB, NIK, and TNF-α mRNA expressions. Pre- and co-treatments with GSE alleviated the detrimental effects of TiO2-NPs which were enforced by the histopathological improvements. These results indicated that GSE effectively protected against TiO2-NP-induced hepatotoxicity via the inhibition of TLR-4/NF-κB signaling and hence suppressed the production of pro inflammatory cytokines such as TNF-α and improved the antioxidant status of the rats.

Keywords

Grape seed proanthocyanidin TiO2 nanoparticles TLR-4/ NF-κB pathway Liver Antioxidants 

Notes

Acknowledgments

Authors thank all the staff members of the Biochemistry and Pathology Departments, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, for their help and advices.

Compliance with ethical standards

All experimental procedures were in accordance with the guidelines of local Animal Care and Use Committee established at the Beni-Suef University (BSU-IACUC). The study was performed after obtaining an approval number (018-8) to conduct the animal experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B 188:126–134PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Shanmuganathan R, MubarakAli D, Prabakar D, Muthukumar H, Thajuddin N, Kumar SS, Pugazhendhi A (2018) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 25(11):10362–10370CrossRefGoogle Scholar
  3. 3.
    Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS, Alam MZ, Tabrez S, Pugazhendhi A, Ismail IMI (2018) Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C Mater Biol Appl 1(89):429–443CrossRefGoogle Scholar
  4. 4.
    Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G (2018) Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res 25(11):10418–10433CrossRefGoogle Scholar
  5. 5.
    Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B 190:86–97PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S et al (2019) Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem 80:197–202CrossRefGoogle Scholar
  7. 7.
    Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B (2018) Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm 539(1-2):104–111PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69(2):288–301PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D et al (2010) Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano and submicron-size TiO2 particles. J Toxicol Sci 115:156–166CrossRefGoogle Scholar
  10. 10.
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wang J, Zhou G, Chen C, Yu H, Wang T (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, Ding M (2009) Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A 72:1141–1149PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicology 10:15CrossRefGoogle Scholar
  14. 14.
    Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel Daim MM (2019) Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-019-05514-2
  15. 15.
    Ma L, Zhao J, Wang J, Liu J, Duan Y, Liu H et al (2009) The acute liver injury in mice caused by nano-anatase TiO2. Nanoscale Res Lett 4:1275–1285PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tang M, Zhang T, Xue Y, Wang S, Huang M et al (2010) Dose dependent in vivo metabolic characteristics of titanium dioxide nanoparticles. J Nanosci Nanotechnol 10:8575–8583PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen JY, Dong X, Zhao J, Tang GP (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. J Appl Toxicol 29:330–337PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chen J, Dong X, Xin Y, Zhao M (2011) Effects of titanium dioxide nanoparticles on growth and some histological parameters of zebrafish (Danio retio) after long-term exposure. Aquat Toxicol 101:493–499PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fadoju O, Ogunsuyi O, Akanni O, Alabi O, Alimba C, Adaramoye O, Cambier S, Eswara S, Gutleb AC, Bakare A (2019) Evaluation of cytogenotoxicity and oxidative stress parameters in male Swiss mice co-exposed to titanium dioxide and zinc oxide nanoparticles. Environ Toxicol Pharmacol 70:103204PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38:439–447PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ (2014) Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37(3):336–347PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW (2009) Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-bid pathway in phytohemagglutinin-stimulated human lymphocytes. Biochem Biophys Res Commun 386:682–687PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Vives-Pi M, Somoza N, Fernandez-Alvarez J, Vargas F, Caro P, Alba A, Gomis R, Labeta MO, Pujol-Borrell R (2003) Evidence of expression of endotoxin receptors CD14. Toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol 133:208–218PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:316PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sun Q, Tan D, Ze Y, Sang X, Liu X, Gui S, Cheng Z, Cheng J, Hu R, Gao G et al (2012) Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. J Hazard Mater 235–236:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, Hu R, Hong M, Hong F (2011) Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res A 96:221–229PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, Sang X, Sun Q, Gao G, Cheng Z et al (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 195:365–370PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165(2):1013PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wilson D, Zaqout M, Heo JH, Park EK, Oak CH, Ueno S (2012) Nuclear factor-kappa B is not involved in titanium dioxide-induced inflammation. J UOEH 34(2):183–191PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Song B, Zhou T, Yang W, Liu J, Shao L (2016) Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity. Environ Toxicol Pharmacol 48:130–140PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Islam MR, Shahnaj MP, Raihan MO, Hasan SMR, Islam ME (2011) In vitro and in vivo antioxidant potential of ethanolic extract of Syzigium jambos (L.) bark. IJRAP 2:810–815Google Scholar
  32. 32.
    Mohamed ET, Safwat GM (2016) Evaluation of cardioprotective activity of Lepidium sativum seed powder in albino rats treated with 5-fluorouracil. Beni-Suef University Journal of Basic and Applied Sciences 5:208–215CrossRefGoogle Scholar
  33. 33.
    Kandeil MAM, Hassanin KMA, Mohammed ET, Safwat GM, Mohamed DS (2018) Wheat germ and vitamin E decrease BAX/BCL-2 ratio in rat kidney treated with gentamicin. Beni-Suef University Journal of Basic and Applied Sciences 7(3):257–262CrossRefGoogle Scholar
  34. 34.
    Sachs A (1997) A natural alternative for treating colds, infections, herpes, candida and many other ailments. The Authoritative Guide to Grapefruit Extract. Stay Healthy Naturally. Life rhythm; Mendocino, California, pp775-795Google Scholar
  35. 35.
    Alkhedaide AQ (2015) The anti-inflammatory effect of grape seed extract in rats exposed to cadmium chloride toxicity. Int J Adv Res 3:298–305Google Scholar
  36. 36.
    Cetin A, Kaynar L, Koçyiğit I, Hacioğlu SK, Saraymen R, Oztürk A, Orhan O, Sağdiç O (2008) The effect of grape seed extract on radiation-induced oxidative stress in the rat liver. Turk J Gatroenterol 19:92–98Google Scholar
  37. 37.
    Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds-biochemistry and functionality. J Med Food  6(4):291–299PubMedCrossRefGoogle Scholar
  38. 38.
    Gusev AI, Kurlov AS (2008) Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology 19(26):265–302CrossRefGoogle Scholar
  39. 39.
    Mittal A, Elmets CA, Katiyar SK (2003) Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24:1379–1388PubMedCrossRefGoogle Scholar
  40. 40.
    Devi A, Jolitha A, Ishii N (2006) Grape seed proanthocyanidin extract (GSPE) and antioxidant defense in the brain of adult rats. Med Sci Monit 12(4):124–129Google Scholar
  41. 41.
    Warheit RA, Hoke DB, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P (2003) Acetyl cholinesterase active centre and gorge conformations analyzed by combinatorial mutations and enantiomeric phosphonates. Biochem J 1(73):33–40CrossRefGoogle Scholar
  43. 43.
    Zilva JF, Pannall PR (1979) Plasma enzymes in diagnosis in clinical chemistry in diagnosis and treatment. Lioyd – Luke London. Chap 17:338Google Scholar
  44. 44.
    Tietz NW, Burtis CA, Duncan P, Ervin K, Petitclerc CJ et al (1983) A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem 29:751–761PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tolman KG, Rej R (1999) Liver function. In: Burtis CA, Ashwood ER (eds) Tietz Textbook of clinical Chemistry. Third ed. W.B. Saunders company, Philadelphia, pp 1125–1177Google Scholar
  46. 46.
    Henry RJ (1964) Clinical Chemistry. Harper & Row Publishers, New York, p 181Google Scholar
  47. 47.
    Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromocresol green. Clinica Chimica Acta 31(1):87–96CrossRefGoogle Scholar
  48. 48.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Beutler E, Duron O, Kelly BM (1963) Improved methods for the determination of glutathione. J Lab Clin Med 61:882–888PubMedPubMedCentralGoogle Scholar
  50. 50.
    Aebi H (1984) Methods Enzymol 105:121–126CrossRefGoogle Scholar
  51. 51.
    Bancroft JD, Gamble M (2002) Theory and practice of histological techniques, 5th ed. Churchill Livingstone, New York, pp 377–694Google Scholar
  52. 52.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the2 (-Delta Delta C(T)) Method. Methods 25(4):402–408PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Meena R, Paulraj R (2012) Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat. Toxicol Environ Chem 94:146–163CrossRefGoogle Scholar
  54. 54.
    An H, Ling C, Xu M, Hu M, Wang H, Liu J, Song G, Liu J (2019) Oxidative damage induced by nano-titanium dioxide in rats and mice: a systematic review and meta-analysis. Biol Trace Elem Res 24Google Scholar
  55. 55.
    Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R (2008) Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin 40(9):777–782PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Fu Y, Zhang Y, Chang X, Zhang Y, Ma S, Sui J, Yin L, Pu Y, Liang G (2014) Systemic immune effects of titanium dioxide nanoparticles after repeated intratracheal instillation in rat. Int J Mol Sci 15:6961–6973PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rizk MZ, Ali SA, Hamed MA, El-Rigal NS, Aly HF, Salah HH (2017) Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed Pharmacother 90:466–472PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Liu HT, Ma LL, Zhao JF, Liu J, Yan JY, Ruan J, Hong FS (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129:170–180PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Morgan A, Ibrahim MA, Galal MK, Ogaly HA, Abd-Elsalam RM (2018) Innovative perception on using Tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomed Pharmacother 103:553–561PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kaplan MM (1972) Alkaline phosphatase. N Engl J Med 286(4):200–202PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Sanjiv C (2002) The liver book: a comprehensive guide to diagnosis, treatment and recovery. Atria Jimcafe Company, New YorkGoogle Scholar
  62. 62.
    Yamamoto M, Maeda H, Hirose N, Radhakrishnan G, Katare RG, Hayashi Y et al (2007) Bilirubin oxidation provoked by nitric oxide radicals predicts the progression of acute cardiac allograft rejection. Am J Transplant 7:1897–1906PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bohme M, Muller M, Leier I, Jedlitschky G, Keppler D (1994) Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology 107(1):255–265PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    McQueen MJ (1995) Clinical and analytical considerations in the utilization of cholinesterase measurements. Clin Chim Acta 237:91–105PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    García-Ayllón MS, Silveyra MX, Candela A, Compañ A, Clària J, Jover R et al (2006) Changes in liver and plasma acetylcholinesterase in rats with cirrhosis induced by bile duct ligation. Hepatology 43:444–453PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gómez JL, García-Ayllon MS, Campoy FJ, Vidal CJ (2000) Muscular dystrophy alters the processing of light acetylcholinesterase but not butyrylcholinesterase forms in liver of Lama2(dy) mice. J Neurosci Res 62:134–145PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Soreq H, Seidman S (2001) Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2:294–302PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Zhou X, Tu ZG (eds) (2003) Clinical Biological Chemical and Biological Chemical Inspection. 3rd edition. People’s Medical Publishing House, Beijing, pp 325–328Google Scholar
  69. 69.
    Ma L, Liu J, Li N, Wang J, DuanY YJ, Liu H, Wang H, Hong F (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31:99–105PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Inoue K, Takano H (2011) Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. Sci World J 11:382e90CrossRefGoogle Scholar
  71. 71.
    Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work 4:177e186Google Scholar
  72. 72.
    Abdou KH, Moselhy WA, Mohamed HM, El-Nahass ES, Khalifa AG (2019) Moringa oleifera leaves extract protects titanium dioxide nanoparticles-induced nephrotoxicity via Nrf2/HO-1 signaling and amelioration of oxidative stress. Biol Trace Elem Res 187(1):181–191PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Durairaj A, Vaiyapuri TS, Kanti MU, Malaya G (2008) Protective activity and antioxidant potential of Lippia nodiflora extract in paracetamol induced hepatotoxicity in rats. Iran J Pharmacol Ther 7:83–89Google Scholar
  74. 74.
    Huyton T, Rossjohn J, Wilce M (2007) Toll-like receptors: structural pieces of a curve-shaped puzzle. Immunol Cell Biol 85:406–410PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Dhupal M, Oh JM, Tripathy DR, Kim SK, Koh SB, Park KS (2018) Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. Int J Nanomedicine 13(13):6735–6750PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fan H, Peck OM, Tempel GE, Halushka PV, Cook JA (2004) Toll-like receptor 4 coupled GI protein signaling pathways regulate extracellular signal-regulated kinase phosphorylation and AP-1 activation independent of NF-kappa B activation. Shock 22:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Li Q, Verma IM (2002) NF-jB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedCrossRefGoogle Scholar
  79. 79.
    Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRefGoogle Scholar
  80. 80.
    Sun SC (2011) Non-canonical NF-kappaB signaling pathway. Cell Res 21:71–85PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Thu YM, Richmond A (2010) NF-κB inducing kinase: a key regulator in the immune system and in cancer. Cytokine Growth Factor Rev 21(4):213–226PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Senftleben U, Cao Y, Xiao G, Greten FR, Kra G, Bonizzi Y et al (2001) Activation by IKK alpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293:1495–1499PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sun SC (2012) The noncanonical NF-κB pathway. Immunol Rev 246:125–140PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Huang X, Tang J, Cai H, Pan Y, He Y, Dai C et al (2015) Anti-Inflammatory Effects of Monoammonium glycyrrhizinate on lipopolysaccharide-induced acute lung injury in mice through regulating nuclear factor-kappa B signaling pathway. Evid Based Complement Alternat Med.  https://doi.org/10.1155/2015/272474 Google Scholar
  86. 86.
    Wang JH, Redmond HP, Watson RW, Bouchier-Hayes D (1995) Role of lipopolysaccharide and tumor necrosis factor-alpha in induction of hepatocyte necrosis. Am J Phys 269:G297–G304Google Scholar
  87. 87.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Paur I, Balstad TR, Kolberg M, Pedersen MK, Austenaa LM, Jacobs DR, Blomhoff R (2010) Extract of oregano, coffee, thyme, clove, and walnuts inhibits NF-kappaB in monocytes and in transgenic reporter mice. Cancer Prev Res 3(5):653–663CrossRefGoogle Scholar
  89. 89.
    Shin MO, Moon JO (2010) Effect of dietary supplementation of grape skin and seeds on liver fibrosis induced by dimethylnitrosamine in rats. Nutr Res Pract 4(5):369–374PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sharma SD, Meeran SM, Katiyar SK (2007) Dietary grape seed proantho-cyanidins inhibit UVB induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-KB signaling in in vivo SKH-1hairless mice. Mol Cancer Ther 6:995–1005PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Li J, Li J, Li S, Heb B, Mi Y, Caoa H, Zhanga C, Li L (2012) Ameliorative effect of grape seed proanthocyanidin extract on thioacetamide-induced mouse hepatic fibrosis. Toxicol Lett 213:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Bogs J, Ebadi A, McDavid D, Robinson S (2006) Identification of the flavonoid hydroxylases from grape-vine and their regulation during fruit development. Plant Physiol 140(1):279–291PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, Zhu M, Fan X, Liang Y, Zhang L, Guo Y, Zhao J (2013) Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res 19:2905–2916PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Mantena SK, Katiyar SK (2006) Grape seed proanthocyanidins inhibit UV radiation-induced oxidative stress and activation of MAPK and NF-KB signaling in human epidermal keratinocytes. Free Radic Biol Med 40:1603–1614PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Liu D, Cao G, Han L, Ye Y, SiMa Y, Ge W (2016) Flavonoids from Radix Tetrastigmae inhibit TLR4/MD-2 mediated JNK and NF-κB pathway with anti-inflammatory properties. Cytokine 84:29–36PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Yang F, Li X, Wang LK, Wang LW, Han XQ, Zhang H, Gong ZJ (2014) Inhibitions of NF-kappaB and TNF-alpha result in differential effects in rats with acute on chronic liver failure induced by d-Gal and LPS. Inflammation 37:848–857PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of Veterinary MedicineBeni-Suef UniversityBeni SuefEgypt

Personalised recommendations