ICP-MS Assessment of Hair Essential Trace Elements and Minerals in Russian Preschool and Primary School Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

  • Alexey A. TinkovEmail author
  • Anna L. Mazaletskaya
  • Olga P. Ajsuvakova
  • Geir Bjørklund
  • Pai-Tsang Huang
  • Lyubov N. Chernova
  • Andrey A. Skalny
  • Anatoly V. Skalny


The objective of the present study was to investigate the relationship between hair essential trace element and mineral content and ADHD in preschool (4–6 years old) and primary school children (6–10 years old) in relation to age and gender. Hair essential trace element and mineral content in 90 Russian children with ADHD and 90 age- and gender-matched neurotypical controls were assessed using inductively coupled plasma mass-spectrometry after microwave digestion. The obtained data demonstrate that hair Co, Cu, Mn, Si, and Zn contents in ADHD children was significantly reduced by 18%, 10%, 27%, 16%, and 19% as compared to the control values, respectively. The most significant decrease in children with ADHD was observed for hair Mg levels, being 29% lower than those in neurotypical children. After adjustment for age and gender, the observed difference in hair element content was more characteristic for preschool children and girls, respectively. Multiple linear regression analysis demonstrated that in a crude model (hair element levels as predictors), only hair Zn content was significantly inversely associated with ADHD (β = − 0.169; p = 0.025). Adjustment for anthropometric parameters (model 2) did not increase the predictive ability of the model, although it improved the association between hair Zn and ADHD in children (β = − 0.194; p = 0.014). Hypothetically, the observed alterations may at least partially contribute to neurobehavioral disturbances in children with ADHD. Moreover, the results of the present study raise the question about the potential benefits of Zn and Mg supplementation in children with ADHD. However, further detailed studies are required to investigate micronutrient deficiencies in ADHD.


Attention Hyperactivity Magnesium Zinc Manganese 


Funding Information

The project was supported by RFBR No. 19-013-00528.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Epstein JN, Loren RE (2013) Changes in the definition of ADHD in DSM-5: subtle but important. Neuropsychiatry 3:455–458. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hansen BH, Oerbeck B, Skirbekk B, Petrovski BÉ, Kristensen H (2018) Neurodevelopmental disorders: prevalence and comorbidity in children referred to mental health services. Nord J Psychiatry 72:285–291. CrossRefPubMedGoogle Scholar
  3. 3.
    Sayal K, Prasad V, Daley D, Ford T, Coghill D (2018) ADHD in children and young people: prevalence, care pathways, and service provision. Lancet Psychiatry 5:175–186. CrossRefPubMedGoogle Scholar
  4. 4.
    Kotov AS, Borisova MN, Panteleeva MV, Matyuk YUV, Shatalin AV Attention deficit hyperactivity disorder. A clinical lecture. Rus J Child Neurol 2:54–58. CrossRefGoogle Scholar
  5. 5.
    Russell AE, Ford T, Russell G (2015) Socioeconomic associations with ADHD: findings from a mediation analysis. PLoS One 10:e0128248. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick J, Holmgren NA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323. CrossRefPubMedGoogle Scholar
  7. 7.
    Sciberras E, Mulraney M, Silva D, Coghill D (2017) Prenatal risk factors and the etiology of ADHD—review of existing evidence. Curr Psychiatry Rep 19(1).
  8. 8.
    Halmøy A, Klungsøyr K, Skjærven R, Haavik J (2012) Pre- and perinatal risk factors in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:474–481. CrossRefPubMedGoogle Scholar
  9. 9.
    Sagiv SK, Epstein JN, Bellinger DC, Korrick SA (2013) Pre- and postnatal risk factors for ADHD in a nonclinical pediatric population. J Atten Disord 17:47–57. CrossRefPubMedGoogle Scholar
  10. 10.
    Kern JK, Geier DA, Sykes LK, Geier MR, Deth RC (2015) Are ASD and ADHD a continuum? A comparison of pathophysiological similarities between the disorders. J Atten Disord 19:805–827. CrossRefPubMedGoogle Scholar
  11. 11.
    Anjos T, Altmäe S, Emmett P et al (2013) Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project. Eur J Nutr 52:1825–1842. CrossRefPubMedGoogle Scholar
  12. 12.
    Woo H, Kim D, Hong YS, Kim YM, Seo JH, Choe B, Park JH, Kang J-W, Yoo J-H, Chueh HW, Lee JH, Kwak MJ, Kim J (2014) Dietary patterns in children with attention deficit/hyperactivity disorder (ADHD). Nutrients 6:1539–1553. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Elbaz F, Zahra S, Hanafy H (2017) Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD). Egypt J Med Hum Genet 18:153–163. CrossRefGoogle Scholar
  14. 14.
    Russo AJ (2010) Decreased serum Cu/Zn SOD associated with high copper in children with attention deficit hyperactivity disorder (ADHD). J Centr Nerv Syst Dis 2. CrossRefGoogle Scholar
  15. 15.
    Yang R, Zhang Y, Gao W, Lin N, Li R, Zhao Z (2019) Blood levels of trace elements in children with attention-deficit hyperactivity disorder: results from a case-control study. Biol Trace Elem Res 187:376–382. CrossRefPubMedGoogle Scholar
  16. 16.
    Kul M, Kara M, Unal F, Tuzun Z, Akbiyik F (2014) Serum copper and ceruloplasmin levels in children and adolescents with attention deficit hyperactivity disorder. Klinik Psikofarmakol Bülteni 24:139–145. CrossRefGoogle Scholar
  17. 17.
    Donfrancesco R, Parisi P, Vanacore N, Martines F, Sargentini V, Cortese S (2013) Iron and ADHD: time to move beyond serum ferritin levels. J Atten Disord 17:347–357. CrossRefPubMedGoogle Scholar
  18. 18.
    Konikowska K, Regulska-Ilow B, Rozanska D (2012) The influence of components of diet on the symptoms of ADHD in children. Rocz Panstw Zakl Hig 63:127–134PubMedGoogle Scholar
  19. 19.
    Verlaet AA, Noriega DB, Hermans N, Savelkoul HF (2014) Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur Child Adolesc Psychiatry 23:519–529. CrossRefPubMedGoogle Scholar
  20. 20.
    Hariri M, Azadbakht L (2015) Magnesium, iron, and zinc supplementation for the treatment of attention deficit hyperactivity disorder: a systematic review on the recent literature. Int J Prev Med 6:83. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kosanovic M, Jokanovic M (2011) Quantitative analysis of toxic and essential elements in human hair. Clinical validity of results. Environ Monit Assess 174:635–643. CrossRefPubMedGoogle Scholar
  22. 22.
    Chojnacka K, Zielińska A, Górecka H, Dobrzański Z, Górecki H (2010) Reference values for hair minerals of Polish students. Environ Toxicol Pharmacol 29:314–319. CrossRefPubMedGoogle Scholar
  23. 23.
    Chojnacka K, Mikulewicz M (2012) Hair mineral analysis in the assessment of human exposure to metals. In: Reddy VR (ed) Handbook of hair in health and disease. Wageningen Academic Publishers, Wageningen, pp 278–292. CrossRefGoogle Scholar
  24. 24.
    Viktorinova A, Ursinyova M, Trebaticka J, Uhnakova I, Durackova Z, Masanova V (2016) Changed plasma levels of zinc and copper to zinc ratio and their possible associations with parent-and teacher-rated symptoms in children with attention-deficit hyperactivity disorder. Biol Trace Elem Res 169:1–7. CrossRefPubMedGoogle Scholar
  25. 25.
    Tippairote T, Temviriyanukul P, Benjapong W, Trachootham D (2017) Hair zinc and severity of symptoms are increased in children with attention deficit and hyperactivity disorder: a hair multi-element profile study. Biol Trace Elem Res 179:185–194. CrossRefPubMedGoogle Scholar
  26. 26.
    Comai S, Bertazzo A, Vachon J, Daigle M, Toupin J, Côté G, Gobbi G (2019) Trace elements among a sample of prisoners with mental and personality disorders and aggression: correlation with impulsivity and ADHD indices. J Trace Elem Med Biol 51:123–129. CrossRefPubMedGoogle Scholar
  27. 27.
    Ghanizadeh A, Berk M (2013) Zinc for treating of children and adolescents with attention-deficit hyperactivity disorder: a systematic review of randomized controlled clinical trials. Eur J Clin Nutr 67:122–124. CrossRefPubMedGoogle Scholar
  28. 28.
    Zamora J, Velasquez A, Troncoso L, Barra P, Guajardo K, Castillo-Duran C (2011) Zinc in the therapy of the attention-deficit/hyperactivity disorder in children. A preliminar randomized controlled trial. Arch Latinoam Nutr 61:242–246PubMedGoogle Scholar
  29. 29.
    El-Bakry A, El Safty AM, Abdou AA, Amin OR, Ayoub DR, Afifi DY (2019) Effect of zinc supplementation in zinc-deficient children with attention-deficit hyperactivity disorder. Egypt J Psychiatr 40:86–94. CrossRefGoogle Scholar
  30. 30.
    Lepping P, Huber M (2010) Role of zinc in the pathogenesis of attention-deficit hyperactivity disorder. CNS Drugs 24:721–728. CrossRefPubMedGoogle Scholar
  31. 31.
    Kozielec T, Starobrat-Hermelin B (1997) Assessment of magnesium levels in children with attention deficit hyperactivity disorder (ADHD). Magnes Res 10:143–148PubMedGoogle Scholar
  32. 32.
    Effatpanah M, Rezaei M, Effatpanah H, Effatpanah Z, Varkaneh HK, Mousavi SM, Fatahi S, Rinaldi G, Hashemi R (2019) Magnesium status and attention deficit hyperactivity disorder (ADHD): a meta-analysis. Psychiatry Res 274:228–234. CrossRefPubMedGoogle Scholar
  33. 33.
    Huang YH, Zeng BY, Li DJ, Cheng YS, Chen TY, Liang HY, Yang WC, Lin PY, Chen YW, Tseng PT, Lin CH (2019) Significantly lower serum and hair magnesium levels in children with attention deficit hyperactivity disorder than controls: a systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 90:134–141. CrossRefGoogle Scholar
  34. 34.
    Kirkland A, Sarlo G, Holton K (2018) The role of magnesium in neurological disorders. Nutrients 10:730. CrossRefPubMedCentralGoogle Scholar
  35. 35.
    El Baza F, AlShahawi HA, Zahra S, Abdel Hakim RA (2016) Magnesium supplementation in children with attention deficit hyperactivity disorder. Egypt J Med Hum Genet 17:63–70. CrossRefGoogle Scholar
  36. 36.
    Mousain-Bosc M, Roche M, Rapin J, Bali JP (2004) Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. J Am Coll Nutr 23:545S–548S. CrossRefPubMedGoogle Scholar
  37. 37.
    Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65:165–177. CrossRefPubMedGoogle Scholar
  38. 38.
    Ode A, Rylander L, Gustafsson P, Lundh T, Källén K, Olofsson P, Ivarsson SA, Rignell-Hydbom A (2015) Manganese and selenium concentrations in umbilical cord serum and attention deficit hyperactivity disorder in childhood. Environ Res 137:373–381. CrossRefPubMedGoogle Scholar
  39. 39.
    Cheong H, Kwon H, Kim E, Ha M, Hong Y, Kang D, Moon S (2008) Blood manganese level and attention deficit/hyperactivity disorder in early school age children. Epidemiology 19:S223–S224. CrossRefGoogle Scholar
  40. 40.
    Hong SB, Kim JW, Choi BS, Hong YC, Park EJ, Shin MS, Kim BN, Yoo HJ, Cho IH, Bhang SY, Cho SC (2014) Blood manganese levels in relation to comorbid behavioral and emotional problems in children with attention-deficit/hyperactivity disorder. Psychiatry Res 220:418–425. CrossRefPubMedGoogle Scholar
  41. 41.
    Farias AC, Cunha A, Benko CR, McCracken JT, Costa MT, Farias LG, Cordeiro ML (2010) Manganese in children with attention-deficit/hyperactivity disorder: relationship with methylphenidate exposure. J Am Acad Child Adolesc Psychiatry 20:113–118Google Scholar
  42. 42.
    Shin DW, Kim EJ, Lim SW, Shin YC, Oh KS, Kim EJ (2015) Association of hair manganese level with symptoms in attention-deficit/hyperactivity disorder. Psychiatry Investig 12:66–72. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bhang SY, Cho SC, Kim JW, Hong YC, Shin MS, Yoo HJ, Cho IH, Kim Y, Kim BN (2013) Relationship between blood manganese levels and children’s attention, cognition, behavior, and academic performance—a nationwide cross-sectional study. Environ Res 126:9–16. CrossRefPubMedGoogle Scholar
  44. 44.
    Torrente M, Gascon M, Vrijheid M, Sunyer J, Forns J, Domingo J, Nadal M (2013) Levels of metals in hair in childhood: preliminary associations with neuropsychological behaviors. Toxics 2:1–16. CrossRefGoogle Scholar
  45. 45.
    Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2006) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127. CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Skalnaya MG, Skalny AV (2018) Essential trace elements in human health: a physician’s view. Publishing House of Tomsk State University, TomskGoogle Scholar
  47. 47.
    Zoni S, Lucchini RG (2013) Manganese exposure: cognitive, motor and behavioral effects on children: a review of recent findings. Curr Opin Pediatr 25:255–260. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mahmoud MM, El-Mazary AAM, Maher RM, Saber MM (2011) Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder. Ital J Pediatr 37:60. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhou F, Wu F, Zou S, Chen Y, Feng C, Fan G (2016) Dietary, nutrient patterns and blood essential elements in Chinese children with ADHD. Nutrients 8:352. CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Gaier ED, Eipper BA, Mains RE (2013) Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 91:2–19. CrossRefPubMedGoogle Scholar
  51. 51.
    Tabatadze T, Kherkheulidze M, Kandelaki E, Kavlashvili N, Ivanashvili T (2018) Attention deficit hyperactivity disorder and hair heavy metal and essential trace element concentrations. Is there a link? Georgian Med News 284:88–92Google Scholar
  52. 52.
    Tudosie M, Truţă E, Daviţoiu AM, Mitu AM, Bojescu AA (2017) Optoelectronics method for determining the cobalt involved in symptoms of attention deficit hyperactivity disorder. 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) IEEE pp 1–4.
  53. 53.
    Zhou T, Guo J, Zhang J, Xiao H, Qi X, Wu C, Chang X, Zhang Y, Lui Q, Zhou Z (2019) Sex-specific differences in cognitive abilities associated with childhood cadmium and manganese exposures in school-age children: a prospective cohort study. Biol Trace Elem Res.
  54. 54.
    Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Bjørklund G, Skalnaya MG, Nikonorov AA, Tinkov AA (2017) Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis 32:195–202. CrossRefPubMedGoogle Scholar
  55. 55.
    Saghazadeh A, Ahangari N, Hendi K, Saleh F, Rezaei N (2017) Status of essential elements in autism spectrum disorder: systematic review and meta-analysis. Rev Neurosci 28:783–809. CrossRefPubMedGoogle Scholar
  56. 56.
    Catalani S, Rizzetti MC, Padovani A, Apostoli P (2012) Neurotoxicity of cobalt. Hum Exp Toxicol 31:421–437. CrossRefPubMedGoogle Scholar
  57. 57.
    Jones SM, Novak AE, Elliott JP (2013) The role of HIF in cobalt-induced ischemic tolerance. Neuroscience 252:420–430. CrossRefPubMedGoogle Scholar
  58. 58.
    Skalny AV, Zaitseva IP, Gluhcheva YG, Skalny AA, Achkasov EE, Skalnaya MG, Tinkov AA (2019) Cobalt in athletes: hypoxia and doping – new crossroads. J Appl Biomed:21–28. CrossRefGoogle Scholar
  59. 59.
    Black MM (2008) Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 29:S126–S131. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Saha T, Chatterjee M, Sinha S, Rajamma U, Mukhopadhyay K (2017) Components of the folate metabolic pathway and ADHD core traits: an exploration in eastern Indian probands. J Hum Genet 62:687–695. CrossRefPubMedGoogle Scholar
  61. 61.
    Nielsen FH (2014) Update on the possible nutritional importance of silicon. J Trace Elem Med Biol 28:379–382. CrossRefPubMedGoogle Scholar
  62. 62.
    Martin KR (2013) Silicon: the health benefits of a metalloid. In: Sigel A, Sigel H, Sigel R (eds) Interrelations between essential metal ions and human diseases. Springer, Dordrecht, pp 451–473CrossRefGoogle Scholar
  63. 63.
    Komorowski JR, Tuzcu M, Sahin N, Juturu V, Orhan C, Ulas M, Sahin K (2012) Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biol Trace Elem Res 149:50–56. CrossRefPubMedGoogle Scholar
  64. 64.
    Sahin K, Tuzcu M, Orhan C, Gencoglu H, Ulas M, Atalay M, Sahin N, Hayirli A, Komorowski JR (2012) The effects of chromium picolinate and chromium histidinate administration on NF-κB and Nrf2/HO-1 pathway in the brain of diabetic rats. Biol Trace Elem Res 150:291–296. CrossRefPubMedGoogle Scholar
  65. 65.
    Chen WY, Mao FC, Liu CH, Kuan YH, Lai NW, Wu CC, Chen CJ (2016) Chromium supplementation improved post-stroke brain infarction and hyperglycemia. Metab Brain Dis 31:289–297. CrossRefPubMedGoogle Scholar
  66. 66.
    Chen HJ, Lee YJ, Yeh GC, Lin HC (2013) Association of attention-deficit/hyperactivity disorder with diabetes: a population-based study. Pediatr Res 73:492. CrossRefPubMedGoogle Scholar
  67. 67.
    Davidson JR, Abraham K, Connor KM, McLeod MN (2003) Effectiveness of chromium in atypical depression: a placebo-controlled trial. Biol Psychiatry 53:261–264. CrossRefPubMedGoogle Scholar
  68. 68.
    Wojciak RW, Mojs E, Stanislawska-Kubiak M, Samborski W (2013) The serum zinc, copper, iron, and chromium concentrations in epileptic children. Epilepsy Res 104:40–44. CrossRefPubMedGoogle Scholar
  69. 69.
    Brownley KA, Girdler SS, Stout AL, McLeod MN (2013) Chromium supplementation for menstrual cycle-related mood symptoms. J Diet Suppl 10:345–356. CrossRefPubMedGoogle Scholar
  70. 70.
    Quinn PO, Madhoo M (2014) A review of attention-deficit/hyperactivity disorder in women and girls: uncovering this hidden diagnosis. Prim Care Companion CNS Disord 16.
  71. 71.
    Nussbaum NL (2012) ADHD and female specific concerns: a review of the literature and clinical implications. J Atten Disord 16:87–100. CrossRefPubMedGoogle Scholar
  72. 72.
    Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC (2005) Neurotoxicants, micronutrients, and social environments: individual and combined effects on children’s development. Psychol Sci Public Interest 6:57–121. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexey A. Tinkov
    • 1
    • 2
    • 3
    Email author
  • Anna L. Mazaletskaya
    • 1
  • Olga P. Ajsuvakova
    • 1
    • 2
    • 3
  • Geir Bjørklund
    • 4
  • Pai-Tsang Huang
    • 5
  • Lyubov N. Chernova
    • 3
  • Andrey A. Skalny
    • 1
    • 3
  • Anatoly V. Skalny
    • 2
    • 3
    • 6
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.IM Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
  3. 3.RUDN UniversityMoscowRussia
  4. 4.Council for Nutritional and Environmental MedicineMo i RanaNorway
  5. 5.Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
  6. 6.Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of SciencesOrenburgRussia

Personalised recommendations