Association Between Thyroid Hormone Status and Trace Elements in Serum of Patients with Nodular Goiter

  • Victor I. Kravchenko
  • Iryna M. Andrusyshyna
  • Ihor A. Luzanchuk
  • Maksym O. PolumbrykEmail author
  • Yuriy M. Tarashchenko


The present study investigated the status of calcium and magnesium as well as essential trace elements including iodine, selenium, copper, iron, and zinc in adults residing in the Zhytomyr region of Ukraine. In addition, the relative risk of goiter occurrence was evaluated. In this comparative study, 40 adults without goiter (control group) and 16 adults with diagnosed nodular goiter (NG) were examined. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the measurements of Mg, Ca, Se, Zn, Cu, and Fe in serum of patients with NG and control group. Patients with nodular goiter had lower serum values of Ca, Mg, Se, Cu, Fe, and Zn than those in the control group. The presence of mild iodine deficiency was evident in both groups with the median urinary iodine excretion (UIE) 80.5 μg/L in the control group and 64.5 μg/L in goiter group. There was a positive association between goiter presence and low concentration of Ca in serum (odds ratio (OR) = 2.29 (1.26–3.55), p < 0.05) in the NG group. High relative risk of goiter was observed at low concentrations of magnesium (OR = 3.33 (1.39–7.62), p < 0.05) and selenium (OR = 1.63, (1.16–1.78), p < 0.05) in comparison with OR values in the control group. Low concentrations of Ca, Mg, Zn, and Se in serum combined with reduced UIE resulted in the highest risk of goiter (OR = 12.5, (2.15–79.42), p < 0.01). This study proved that Thyroglobulin concentration in serum is the reliable indicator of nodular goiter. We also suggest that a combination of low concentrations of Ca, Mg, Zn, Cu, and Se in blood serum, and reduced iodine concentration in urine resulted in the highest risk of nodular goiter development.


Nodular goiter Thyroid gland Thyroid hormones Iodine Selenium 



The authors are grateful to the staff of Laboratory of Analytical Chemistry and Monitoring of Toxic Compounds for their help and instrumental support. Also, the authors are thankful to Prof. Mykola Tronko for his valuable comments and help.

Compliance with Ethical Standards

The study protocol was approved by the Ethics Committee of V.P. Komissarenko Institute of Endocrinology and Metabolism and all participants gave informed consent before blood and urine sampling.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30(4):376–408. CrossRefPubMedGoogle Scholar
  2. 2.
    Rocha HS, Lopesa RT, Valiante PM, Tirao G, Mazzarod I, Honnicked MG, Cusatis C, Gilese C (2005) Diagnosis of thyroid nodular goiter using diffraction-enhanced imaging. Nucl Instrum Meth A 548:175–180. CrossRefGoogle Scholar
  3. 3.
    Carle A, Krejbjerg A, Laurberg P (2014) Epidemiology of nodular goitre. Influence of iodine intake. Best Pract Res Clin Endocrinol Metab 28(4):465–479. CrossRefPubMedGoogle Scholar
  4. 4.
    Laurberg P, Nøhr SB, Pedersen KM, Hreidarsson AB, Andersen S, Bülow Pedersen I, Knudsen N, Perrild H, Jørgensen T, Ovesen L (2000) Thyroid disorders in mild iodine deficiency. Thyroid 10(11):951–963. CrossRefPubMedGoogle Scholar
  5. 5.
    Liu Y, Huang H, Zeng J, Sun C (2013) Thyroid volume, goiter prevalence, and selenium levels in an iodine-sufficient area: a cross-sectional study. BMC Public Health 13:1–7. CrossRefGoogle Scholar
  6. 6.
    Corvillian B, van Sande J, Laurent E, Dumont JE (1991) The H2O2-generating system modulates protein iodination and the activity of the pentose phosphate pathway in dog thyroid. Endocrinology 128:779–785. CrossRefGoogle Scholar
  7. 7.
    Gydee H, O’Neill JT, Patel A, Bauer AJ, Tuttle RM, Francis GL (2004) Differentiated thyroid carcinomas from children and adolescents express IGF-I and the IGF-I-receptor (IGF-I-R). Pediatr Res 55(4):709–715. CrossRefPubMedGoogle Scholar
  8. 8.
    Yeh MW, Rougier JP, Park JW, Duh QY, Wong M, Werb Z, Clark OH (2006) Differentiated thyroid cancer cells invasion is regulated through epidermal growth factor receptor-dependent activation of matrix metalloproteinase (MMP)-2 gelatinase. Endocr Relat Cancer 13(4):1173–1183. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Przybylik-Mazurek E, Zagrodzki P, Kuźniarz-Rymarz S, Hubalewska-Dydejczyk A (2011) Thyroid disorders-assessments of trace elements, clinical, and laboratory parameters. Biol Trace Elem Res 141(1-3):65–75. CrossRefPubMedGoogle Scholar
  10. 10.
    Köhrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984. CrossRefPubMedGoogle Scholar
  11. 11.
    Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465. CrossRefPubMedGoogle Scholar
  12. 12.
    Danforth E Jr, Burger AG (1989) The impact of nutrition on thyroid hormone physiology and action. Annu Rev Nutr 9:201–227. CrossRefPubMedGoogle Scholar
  13. 13.
    MacNeil S, Munro DS, Metcalfe R, Cotterell S, Ruban L, Davies R, Weetman AP (1994) An investigation of the ability of TSH and Graves’ immunoglobulin G to increase intracellular calcium in human thyroid cells, rat FRTL-5 thyroid cells and eukaryotic cells transfected with the human TSH receptor. J Endocrinol 143(3):527–540. CrossRefPubMedGoogle Scholar
  14. 14.
    Goulko GM, Chepurny NI, Jacob P, Kairo IA et al (1998) Thyroid dose and thyroid cancer incidence after the Chernobyl accident: assessments for the Zhytomyr region (Ukraine). Radiat Environ Biophys 36:261–273CrossRefGoogle Scholar
  15. 15.
    Gharib H (1994) Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect. Mayo Clin Proc 69:44–49CrossRefGoogle Scholar
  16. 16.
    Dunn JT, Grutchfield HE, Gutekunst R, Dunn AD (1993) Two simple methods for measuring iodine in urine. Thyroid. 3:119–123. CrossRefPubMedGoogle Scholar
  17. 17.
    Brunn J, Block U, Ruf et al (1981) Volumetrie der Schilddrüsenlappen mittels Real-time-Sonographie. Dtsch Med Wochenschr 106:1338–1340CrossRefGoogle Scholar
  18. 18.
    Skalnyi AV, Kudrin AV (2000) Radiation, microelements, antioxidants, and immunity (trace elements and antioxidants in health improving). Mir, Moscow (in Russian)Google Scholar
  19. 19.
    Sakiz D, Kaya A, Kulaksizoglu M (2016) Serum selenium levels in euthyroid nodular thyroid diseases. Biol Trace Elem Res 174(1):21–26. CrossRefPubMedGoogle Scholar
  20. 20.
    Iervasi A, Iervasi G, Carpi A, Zucchelli GC (2006) Serum thyroglobulin measurement: clinical background and main methodological aspects with clinical impact. Biomed Pharmacother 60(8):414–424. CrossRefPubMedGoogle Scholar
  21. 21.
    Harris ED (2001) Copper homeostasis: the role of cellular transporters. Nutr Rev 59(9):281–285. CrossRefPubMedGoogle Scholar
  22. 22.
    Giray B, Arnaud J, Sayek I, Favier A, Hincal F (2010) Trace elements status in multinodular goiter. J Trace Elem Med Biol 24(2):106–110. CrossRefPubMedGoogle Scholar
  23. 23.
    Aihara K, Nishi Y, Hatano S, Kihara M, Yoshimitsu K, Takeichi N, Ito T, Ezaki H, Usui T (1984) Zinc, copper, manganese, and selenium metabolism in thyroid disease. Am J Clin Nutr 40(1):26–35. CrossRefPubMedGoogle Scholar
  24. 24.
    Kazi GL, Kandhro GA, Afridi HA et al (2009) Interaction of copper with iron, iodine, and thyroid hormone status in goitrous patients. Biol Trace Elem Res 134:265–279. CrossRefPubMedGoogle Scholar
  25. 25.
    Błazewicz A, Dolliver W, Sivsammye S, Deol A (2010) Determination of cadmium, cobalt, copper, iron, manganese, and zinc in thyroid glands of patients with diagnosed nodular goitre using ion chromatography. J Chromatogr B 878:34–38. CrossRefGoogle Scholar
  26. 26.
    Betsy A, Binitha M, Sarita S (2013) Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichol 5:40–42. CrossRefGoogle Scholar
  27. 27.
    Jain RB (2014) Thyroid function and serum copper, selenium, and zinc in general U.S. population. Biol Trace Elem Res 159:87–98. CrossRefPubMedGoogle Scholar
  28. 28.
    Kudabayeva K, Koshmaganbetova G, Mickuviene N, Skalnaya M et al (2016) Hair trace elements are associated with increased thyroid volume in schoolchildren with goiter. Biol Trace Elem Res 174:261–266. CrossRefPubMedGoogle Scholar
  29. 29.
    Smith SM, Finley J, Johnson LK, Lukaski HC (1994) Indices of in vivo and in vitro thyroid hormone metabolism in iron-deficient rats. Nutr Res 14:729–739. CrossRefGoogle Scholar
  30. 30.
    Moncayo R, Moncayo H (2015) Proof of concept of the WOMED model of benign thyroid disease: restitution of thyroid morphology after correction of physical and psychological stressors and magnesium supplementation. BBA Clin 3:113–122 CrossRefGoogle Scholar
  31. 31.
    Hasey GM, D’alssendro E, Cooke RG (1993) The interface between thyroid activity, and depression: a pilot study. Biol Psychiatry 33(2):133–135CrossRefGoogle Scholar
  32. 32.
    (1984) The hypocalcemia associated with magnesium infusion is mediated through parathyroid hormone. Nutr Rev.42(9):315–317.
  33. 33.
    Szabo ZS, Ritzl F (1981) Hypercalcemia in hyperthyroidism. Role of age and goiter type. Klin Wochenschr 59(6):275–279CrossRefGoogle Scholar
  34. 34.
    Kravchenko VI, Luzanchuk IA, Andrusyshyna IM, Polumbryk M (2018) Study of macro- and microelement status in patients with nodular goiter residing in Kyiv region. Galician Med J 25(4).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Epidemiology of Endocrine DiseasesInstitute of Endocrinology and Metabolism of National Academy of Medical Sciences of UkraineKyivUkraine
  2. 2.Laboratory of Analytical Chemistry and Monitoring Of Toxic CompoundsInstitute of Medicine of Labor of National Academy of Medical Sciences of UkraineKyivUkraine
  3. 3.Laboratory of the Advanced Food StudiesNational University of Food TechnologiesKyivUkraine

Personalised recommendations