Advertisement

Role of Magnesium in Type 2 Diabetes Mellitus

  • Jianan Feng
  • Heyuan Wang
  • Zhe Jing
  • Yue Wang
  • Yanli Cheng
  • Wanning Wang
  • Weixia SunEmail author
Article

Abstract

Magnesium (in its ionized and biologically active form, Mg2+) is an essential trace element that participates in numerous physiologic processes. Abnormal Mg2+ homeostasis can lead to many metabolic disorders, including diabetes mellitus (DM) and its complications. Mg2+ participates in energy generation and is required for DNA and RNA synthesis, reproduction, and protein synthesis. Additionally, Mg2+ acts as a calcium antagonist and protects vascular endothelial cells from oxidative stress. Imbalances in Mg2+ status, more frequently hypomagnesemia, inhibit glucose transporter type 4 translocation, increase insulin resistance, affect lipid metabolism, induce oxidative stress, and impair the antioxidant system of endothelial cells, In these ways, hypomagnesemia contributes to the initiation and progression of DM and its macrovascular and microvascular complications. In this review, we summarize recent advances in knowledge of the mechanisms whereby Mg2+ regulates insulin secretion and sensitivity. In addition, we discuss the future prospects for research regarding the mechanisms whereby Mg2+ status impacts DM and its complications.

Keywords

Mg2+ Diabetes Insulin resistance Oxidative stress Lipid peroxidation Gene mutation 

Notes

Funding Information

The study was financially supported by the National Natural Science Foundation of China Grant 81400725(to W. Sun), Jilin University Bethune Foundation Grant 2015201(to W. Sun), Natural Science Foundation of Jilin Province 20160101030JC (to W. Sun), and the 13th Five-Year Plan for Scientific Research of Jilin Provincial Education Department JJKH20180210KJ (to W. Sun).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gimenez-Mascarell P et al (2018) Novel aspects of renal magnesium homeostasis. Front Pediatr 6:77PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhang Y et al (2018) Association between serum magnesium and common complications of diabetes mellitus. Technol Health Care 26(S1):379–387PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Palacios OM, Kramer M, Maki KC (2019) Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expert Rev Endocrinol Metab 14(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Costello R, Wallace TC, Rosanoff A (2016) Magnesium. Adv Nutr 7(1):199–201PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Takashina Y et al (2018) Sodium citrate increases expression and flux of Mg(2+) transport carriers mediated by activation of MEK/ERK/c-Fos pathway in renal tubular epithelial cells. Nutrients:10(10)PubMedCentralCrossRefGoogle Scholar
  9. 9.
    de Baaij JH, Hoenderop JG, Bindels RJ (2012) Regulation of magnesium balance: lessons learned from human genetic disease. Clin Kidney J 5(Suppl 1):i15–i24PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Seo JW, Park TJ (2008) Magnesium metabolism. Electrolyte Blood Press 6(2):86–95PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zofkova I, Davis M, Blahos J (2017) Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 66(3):391–402PubMedPubMedCentralGoogle Scholar
  12. 12.
    Seema Abhijeet K, Jon C (2014) The current state of diabetes mellitus in India. Australas Med J 7(1):45–48CrossRefGoogle Scholar
  13. 13.
    Kumar A et al (2013) India towards diabetes control: key issues. Australas Med J 6(10):524–531PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Romani AM (2013) Magnesium in health and disease. Met Ions Life Sci 13:49–79PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bergman and Michael (2013) Pathophysiology of prediabetes and treatment implications for the;prevention of type 2 diabetes mellitus. Endocrine 43(3):504–513CrossRefGoogle Scholar
  16. 16.
    Ramadass S, Basu S, Srinivasan AR (2015) SERUM magnesium levels as an indicator of status of diabetes mellitus type 2 ☆. Diabetes Metab Syndr 9(1):42–45PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Barbagallo M et al (2014) Serum ionized magnesium in diabetic older persons. Metabolism 63(4):502–509PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Barbagallo M et al (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Asp Med 24(1):39–52CrossRefGoogle Scholar
  19. 19.
    Mcnair P et al (2010) Renal hypomagnesaemia in human diabetes mellitus: its relation to glucose homeostasis. Eur J Clin Investig 12(1):81–85CrossRefGoogle Scholar
  20. 20.
    Schutten JC et al (2019) Measured by nuclear magnetic resonance spectroscopy, is associated with increased risk of developing type 2 diabetes mellitus in women: results from a Dutch prospective cohort study. J Clin Med:8(2)Google Scholar
  21. 21.
    Ma J et al (1995) Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. J Clin Epidemiol 48(7):927–940PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kang EY et al (2019) Association of statin therapy with prevention of vision-threatening diabetic retinopathy. JAMA OphthalmolGoogle Scholar
  23. 23.
    Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124(3):139–152CrossRefGoogle Scholar
  24. 24.
    Schena, F.P. and G. Loreto, Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol, 2005. 16 Suppl 1(Suppl 1): p. S30PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bherwani S et al (2017) Hypomagnesaemia: a modifiable risk factor of diabetic nephropathy. Horm Mol Biol Clin Invest 29(3):79–84Google Scholar
  26. 26.
    Xiang M et al (2014) Level of blood trace elements in female patients with type 2 diabetic retinopathy and its related factors analysis. China Medical HeraldGoogle Scholar
  27. 27.
    Bherwani S et al (2016) Hypomagnesaemia: a modifiable risk factor of diabetic nephropathy. Horm Mol Biol Clin Invest 29(3):79–84Google Scholar
  28. 28.
    Prabodh, S., ., et al., Status of copper and magnesium levels in diabetic nephropathy cases: a case-control study from South India. Biol Trace Elem Res, 2011. 142(1): p. 29–35PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Guerrero-Romero, F., ., et al., Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab, 2004. 30(3): p. 253–258PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Villegas VM, Schwartz SG (2019) Current and future pharmacologic therapies for diabetic retinopathy. Curr Pharm DesGoogle Scholar
  31. 31.
    Mahajan N, Arora P, Sandhir R (2019) Perturbed biochemical pathways and associated oxidative stress Lead to vascular dysfunctions in diabetic retinopathy. Oxidative Med Cell Longev 2019:8458472CrossRefGoogle Scholar
  32. 32.
    Ozdemir G et al (2014) Rapamycin inhibits oxidative and angiogenic mediators in diabetic retinopathy. Can J Ophthalmol 49(5):443–449PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxidative Med Cell Longev 2014(14):752387Google Scholar
  34. 34.
    Hamdan HZ et al (2015) Serum magnesium, iron and ferritin levels in patients with diabetic retinopathy attending Makkah Eye Complex, Khartoum, Sudan. Biol Trace Elem Res 165(1):30–34PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kundu D et al (2013) Serum magnesium levels in patients with diabetic retinopathy. J Nat Sci Biol Med 4(1):113–116PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wang S et al (2013) Serum electrolyte levels in relation to macrovascular complications in Chinese patients with diabetes mellitus. Cardiovasc Diabetol 12:146PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Pop-Busui R et al (2013) Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care 36(10):3208–3215PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhang Q et al (2018) Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 146:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Boulton AJ et al (2005) The global burden of diabetic foot disease. Lancet 366(9498):1719–1724PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chen C et al (2016) Low serum magnesium levels are associated with impaired peripheral nerve function in type 2 diabetic patients. Sci Rep 6(1):32623CrossRefGoogle Scholar
  41. 41.
    Crescenzo R et al (2014) Mitochondrial efficiency and insulin resistance. Front Physiol 5:512PubMedPubMedCentralGoogle Scholar
  42. 42.
    Arfuzir NN et al (2016) Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury. Neuroscience 325:153–164PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Razzaghi R et al (2018) Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, Placebo-Controlled Trial. Biol Trace Elem Res 181(2):207–215PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Villegas R et al (2009) Dietary calcium and magnesium intakes and the risk of type 2 diabetes: the Shanghai Women’s Health Study. Am J Clin Nutr 89(4):1059–1067PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Yang Y et al (2013) Primary prevention of macroangiopathy in patients with short-duration type 2 diabetes by intensified multifactorial intervention: seven-year follow-up of diabetes complications in Chinese. Diabetes Care 36(4):978–984PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Agrawal P et al (2011) Association of macrovascular complications of type 2 diabetes mellitus with serum magnesium levels. Diabetes Metab Syndr Clin Res Rev 5(1):41–44CrossRefGoogle Scholar
  47. 47.
    Floege J (2015) Magnesium in CKD: more than a calcification inhibitor? J Nephrol 28(3):269–277PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Boulton AJ et al (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4):956–962PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Morakinyo AO, Samuel TA, Adekunbi DA (2018) Magnesium upregulates insulin receptor and glucose transporter-4 in streptozotocin-nicotinamide-induced type-2 diabetic rats. Endocr Regul 52(1):6–16PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Liu, M., et al., Magnesium supplementation improves diabetic mitochondrial and cardiac diastolic function. JCI Insight, 2019. 4(1)Google Scholar
  51. 51.
    Zghoul N et al (2018) Hypomagnesemia in diabetes patients: comparison of serum and intracellular measurement of responses to magnesium supplementation and its role in inflammation. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 11:389–400CrossRefGoogle Scholar
  52. 52.
    Fang, X., et al., Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: a systematic review and meta-regression analysis of prospective cohort studies. Nutrients, 2016. 8(11)Google Scholar
  53. 53.
    Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458(1):40–47PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Gommers LM et al (2016) Hypomagnesemia in type 2 diabetes: a vicious circle? Diabetes 65(1):3–13PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hruby A et al (2013) Dietary magnesium and genetic interactions in diabetes and related risk factors: a brief overview of current knowledge. Nutrients 5(12):4990–5011PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jiang BH et al (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 96(5):2077–2081PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rehman K, Akash MS (2016) Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23(1):87PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kostov, K., Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling. Int J Mol Sci, 2019. 20(6)Google Scholar
  59. 59.
    Khodabandehloo H et al (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res 167(1):228–256PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sohrabipour S et al (2018) Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 32(6):603–616PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Velazquez-Villegas LA et al (2017) Recycling of glucagon receptor to plasma membrane increases in adipocytes of obese rats by soy protein; implications for glucagon resistance. Mol Nutr Food Res:61(10)CrossRefGoogle Scholar
  62. 62.
    Nepton S et al (2010) Effects of administration of oral magnesium on plasma glucose and pathological changes in the aorta and pancreas of diabetic rats. Clin Exp Pharmacol Physiol 32(8):604–610Google Scholar
  63. 63.
    Maiese K (2015) FoxO transcription factors and regenerative pathways in diabetes mellitus. Curr Neurovasc Res 12(4):404–413PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gross DN, Wan M, Birnbaum MJ (2009) The role of FOXO in the regulation of metabolism. Current Diabetes Reports 9(3):208–214PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Barooti A et al (2019) Effect of oral magnesium sulfate administration on blood glucose hemostasis via inhibition of gluconeogenesis and FOXO1 gene expression in liver and muscle in diabetic rats. Biomed Pharmacother 109:1819–1825PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Voets T et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Nair AV et al (2012) Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci U S A 109(28):11324–11329PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Schwenk RW, Vogel H, Schurmann A (2013) Genetic and epigenetic control of metabolic health. Mol Metab 2(4):337–347PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Haghvirdizadeh P et al (2015) KCNJ11: genetic polymorphisms and risk of diabetes mellitus. J Diabetes Res 2015:908152PubMedPubMedCentralGoogle Scholar
  70. 70.
    Gribble FM et al (1998) MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci U S A 95(12):7185–7190PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhou Q et al (2010) Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels. J Clin Endocrinol Metab 95(12):E473–E478PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wu JX et al (2018) Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein & Cell 9(6):553–567CrossRefGoogle Scholar
  73. 73.
    Patel MR et al (2018) Effect of food on the pharmacokinetics of saroglitazar magnesium, a novel dual PPARalphagamma agonist, in healthy adult subjects. Clin Drug Investig 38(1):57–65PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Gross B et al (2016) PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol 13:36PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kersten S, Stienstra R (2017) The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136:75–84PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ratman D et al (2016) Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARalpha. Nucleic Acids Res 44(22):10539–10553PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    O’Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366(2):135–151PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Castiglioni S, Cazzaniga A, Maier JA (2014) Potential interplay between NFΰB and PPARÎ3 in human dermal microvascular endothelial cells cultured in low magnesium. Magnes Res 27(2):86–93PubMedPubMedCentralGoogle Scholar
  79. 79.
    Wei CC et al (2017) Magnesium reduces hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARA, JAK-STAT, and AMPK pathways in hepatocytes. J Nutr 147(6):1070–1078PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kumawat M et al (2013) Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 5(3):213–219PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rong G et al (2014) Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway. Diab Vasc Dis Res 11(2):92–102CrossRefGoogle Scholar
  82. 82.
    Hui Y et al (2011) Oxidative stress and diabetes mellitus. Clin Chem Lab Med 49(11):1773–1782Google Scholar
  83. 83.
    Sajjan NB et al (2014) Evaluation of association of serum magnesium with dyslipidaemia in diabetic nephropathy – a case control study. Natl J Med ResGoogle Scholar
  84. 84.
    Nadler JL et al (1992) Intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus. Diabetes Care 15(7):835–841PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Nielsen FH (2018) Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res 11:25–34PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lin CY et al (2010) L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate. Br J Anaesth 104(1):44–51PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Weglicki WB (2012) Hypomagnesemia and inflammation: clinical and basic aspects. Annu Rev Nutr 32(32):55–71PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Tong I, M et al (2015) EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor blockade. J Cardiovasc Pharmacol 65(1):54–61Google Scholar
  89. 89.
    Putti R et al (2015) Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source. Front Physiol 6:426PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    He X, Kan H, L, Ma Q (2009) Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 46(1):47–58PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sifuentes-Franco S et al (2018) Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol 2018:1875870PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yanhong W et al (2013) Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Pnas 110(41):E3910–E3918CrossRefGoogle Scholar
  93. 93.
    María S et al (2006) Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281(21):14841–14851CrossRefGoogle Scholar
  94. 94.
    Sun W et al (2018) The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 46:117–127PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Gao Y et al (2015) Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem 63(26):6019–6026PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zhao Y et al (2015) The role of PTP1BO-GlcNAcylation in hepatic insulin resistance. Int J Mol Sci 16(9):22856–22869PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hur KY et al (2010) Protective effects of magnesium lithospermate B against diabetic atherosclerosis via Nrf2-ARE-NQO1 transcriptional pathway. Atherosclerosis 211(1):69–76PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Gao F et al (2019) Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol SinGoogle Scholar
  99. 99.
    Yang Z et al (2000) Extracellular magnesium deficiency induces contraction of arterial muscle: role of PI3-kinases and MAPK signaling pathways. Pflugers Arch 439(3):240–247PubMedPubMedCentralGoogle Scholar
  100. 100.
    Bhakkiyalakshmi E et al (2015) The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacol Res 91:104–114PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76(76):387PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zheng Z et al (2014) The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol Chem 289(8):5217CrossRefGoogle Scholar
  103. 103.
    Chubanov V et al (2016) Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5Google Scholar
  104. 104.
    Gang C et al (2010) Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J Biol Chem 285(34):26081–26087CrossRefGoogle Scholar
  105. 105.
    Simon F, Varela D, Cabello-Verrugio C (2013) Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 25(7):1614–1624PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chan KH et al (2015) Genetic variations in magnesium-related ion channels may affect diabetes risk among African American and Hispanic American women. J Nutr 145(3):418–424PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Song Y et al (2009) Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women. BMC Med Genet 10:4PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kieboom BCT et al (2017) Serum magnesium and the risk of prediabetes: a population-based cohort study. Diabetologia 60(5):843–853PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
  2. 2.Department of EndocrinologyThe First Hospital of Jilin UniversityChangchunChina
  3. 3.Department of Laboratory MedicineThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations