Effect of Titanium Dioxide Nanoparticles on the Resistance of Silkworm to Cytoplasmic Polyhedrosis Virus in Bombyx mori

  • Guodong Zhao
  • Xiao Zhang
  • Jialu Cheng
  • Xin Huang
  • Heying Qian
  • Gang Li
  • Anying XuEmail author


Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a serious disease harmful to silk industry, which is one of the major sources of financial support for farmers in many developing countries. So far, there is still no good way to prevent or treat this disease. In this study, titanium dioxide nanoparticles (TiO2 NPs) were used to pretreat silkworm larvae, and good results were achieved in improving silkworm immunity and alleviating the damage of cytoplasmic polyhedrosis virus. The results showed that nano-titanium dioxide pretreatment could inhibit the proliferation of BmCPV in the midgut of silkworm, activate JAK/STAT and PI3K-AKT immune signaling pathways, and upregulate the expression of key immune genes, so as to improve the immunity of silkworm and enhance the resistance of silkworm to BmCPV.


Bombyx mori cytoplasmic polyhedrosis virus Titanium dioxide nanoparticles Silkworm Resistance-related genes 


Funding Information

This work was supported by the Foundation of Post Scientist in National Sericultural System (Grant No. CARS-22-ZJ0101), the Natural Science Foundation of Jiangsu Province (Grant No. BK20181228), the Key Research & Development program of Zhenjiang (Grant No. NY2018021), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB230001).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jiang L, Xia Q (2014) The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Mol Biol 48:1–7CrossRefGoogle Scholar
  2. 2.
    Li B, Wang YH, Liu HT, Xu YX, Wei ZG, Chen YH, Shen WD (2010) Resistance comparison of domesticated silkworm (Bombyx mori L.) and wild silkworm (Bombyx mandarina M.) to phoxim insecticide. Afr J Biotechnol 9:1771–1775CrossRefGoogle Scholar
  3. 3.
    Gu ZY, Li FC, Hu JS, Ding C, Wang CQ, Tian JH, Xue B, Xu KZ, Shen WD, Li B (2017) Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality. Pest Manag Sci 73:554–561CrossRefGoogle Scholar
  4. 4.
    Belloncik S (1989) Cytoplasmic polyhedrosis viruses—Reoviridae. Adv Virus Res 37:173–209CrossRefGoogle Scholar
  5. 5.
    Belloncik S, Mori H (1998) Cypoviruses. In: Miller LK, Ball LA (eds) The insect viruses. Plenum, New York, pp 337–369CrossRefGoogle Scholar
  6. 6.
    Fouillaud M, Morel G (1994) Characterization of cytoplasmic and nuclear polyhedrosis viruses recovered from the nest of Polistes hebraeus F. (Hymenoptera; Vespidae). J Invertebr Pathol 64:89–95CrossRefGoogle Scholar
  7. 7.
    Magnoler A (1974) Effects of a cytoplasmic polyhedrosis on larval and postlarval stages of the gypsy moth, Porthetria dispar. J Invertebr Pathol 23:263–274CrossRefGoogle Scholar
  8. 8.
    Rubinstein R, Harley EH, Losman M, Lutton D (1976) The nucleic acids of viruses infecting Heliothis armigera. Virology 69:323–326CrossRefGoogle Scholar
  9. 9.
    Zhang YL, Cao GL, Zhu LY, Chen F, Zar MS, Wang SM, Hu XL, Wei YH, Xue RY, Gong CL (2017) Integrin beta and receptor for activated protein kinase c are involved in the cell entry of Bombyx mori, cypovirus. Appl Microbiol Biotechnol 101:3703–3716CrossRefGoogle Scholar
  10. 10.
    Jiang L, Wang GH, Cheng TC, Yang Q, Jin SK, Lu G, Wu FQ, Xiao Y, Xu HF, Xia QY (2012) Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Arch Virol 157:1323–1328CrossRefGoogle Scholar
  11. 11.
    Xu AY, Li MW, Lin CQ, Zhang YH, Hou CX (2002) The comparison of the resistibility to Bombyx mori cytoplasmic polyhedrosis virus among silkworm germplasm resource. Sci Seric 28:157–159Google Scholar
  12. 12.
    Li B, Hu RP, Cheng Z, Cheng J, Xie Y, Gui SX, Sun QQ, Sang XZ, Gong XL, Cui YL, Shen WD, Hong FS (2012) Titanium dioxide nanoparticles relieve biochemical dysfunctions of fifth-instar larvae of silkworms following exposure to phoxim insecticide. Chemosphere 89:609–614CrossRefGoogle Scholar
  13. 13.
    Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077CrossRefGoogle Scholar
  14. 14.
    Choi H, Stathatos E, Dionysiou DD (2006) Solgel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B Environ 63:60–67CrossRefGoogle Scholar
  15. 15.
    Colvin VL (2004) Sustainability for nanotechnology: making smaller safer and changing the way industry thinks in the process. Scientist 18:26–27Google Scholar
  16. 16.
    Esterkin CR, Negro AC, Alfano OM, Cassano AE (2005) Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO2. AICHE J 51:2298–2310CrossRefGoogle Scholar
  17. 17.
    Gélis C, Girard S, Mavon A, Delverdier M, Paillous N, Vicendo P (2003) Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models. Photodermatol Photoimmunol Photomed 19:242–253CrossRefGoogle Scholar
  18. 18.
    Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R (2008) Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin 40:777–782CrossRefGoogle Scholar
  19. 19.
    Sun D, Meng TT, Loong TH, Hwa TJ (2004) Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Water Sci Technol 49:103–110CrossRefGoogle Scholar
  20. 20.
    Wang JJ, Sanderson BJS, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106CrossRefGoogle Scholar
  21. 21.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41:2699–2711CrossRefGoogle Scholar
  22. 22.
    Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316CrossRefGoogle Scholar
  23. 23.
    Mikkelsen L, Sheykhzade M, Jensen KA, Saber AT, Jacobsen NR, Vogel U, Wallin H, Loft S, Møller P (2011) Modest effect on plaqueprogression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO2. Part Fibre Toxicol 8:32CrossRefGoogle Scholar
  24. 24.
    Li B, Xie Y, Cheng Z, Cheng J, Hu RP, Gui SX, Sang XZ, Sun QQ, Zhao XY, Sheng L, Shen WD, Hong FS (2012) BmNPV resistance of silkworm larvae resulting fromthe ingestion of TiO2 nanoparticles. Biol Trace Elem Res 150:221–228CrossRefGoogle Scholar
  25. 25.
    Su J, Li B, Cheng S, Zhu Z, Sang XZ, Gui SX, Xie Y, Sun QQ, Cheng Z, Cheng J, Hu RP, Shen WD, Xia QY, Zhao P, Hong FS (2013) Phoxim-induced damages of Bombyx mori larval midgut and titanium dioxide nanoparticles protective role under phoxim-induced toxicity. Environ Toxicol 29:1355–1366CrossRefGoogle Scholar
  26. 26.
    Xu KZ, Li FC, Ma L, Wang BB, Zhang H, Ni M, Hong FS, Shen WD, Li B (2015) Mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance by titanium dioxide nanoparticles in silkworm. PLoS One 10:1–18Google Scholar
  27. 27.
    Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6:946–953CrossRefGoogle Scholar
  28. 28.
    Welch H, Eguinoa A, Stephens LR, Hawkins PT (1998) Protein kinase B and Rac are activated in parallel within a phosphatidylinositide 30H-kinase-controlled signaling pathway. J Biol Chem 273:11248–11256CrossRefGoogle Scholar
  29. 29.
    Hu RP, Zheng L, Zhang T, Gao GD, Cui YL, Cheng Z, Cheng J, Hong MM, Tang M, Hong FS (2011) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191:32–40CrossRefGoogle Scholar
  30. 30.
    Zhang YL, Xue RY, Cao GL, Meng XK, Zhu YX, Pan ZH, Gong CL (2014) Nonvirus encoded proteins could be embedded into Bombyx mori cypovirus polyhedra. Mol Biol Rep 41:2657–2666CrossRefGoogle Scholar
  31. 31.
    Zhang YL, Zhu LY, Cao GL, Zar MS, Hu XL, Wei YH, Xue RY, Gong CL (2019) Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 121:1–7CrossRefGoogle Scholar
  32. 32.
    Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med 84:901–910CrossRefGoogle Scholar
  33. 33.
    Gao K, Deng XY, Qian HY, Wu P, Qin GX, Liu T, Shen ZY, Guo XJ (2012) Novel protein of IBP from Bombyx mori, involved in cytoplasmic polyhedrosis virus infection. J Invertebr Pathol 110:83–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Guodong Zhao
    • 1
    • 2
  • Xiao Zhang
    • 1
  • Jialu Cheng
    • 1
  • Xin Huang
    • 1
  • Heying Qian
    • 1
    • 2
  • Gang Li
    • 1
    • 2
  • Anying Xu
    • 1
    • 2
    • 3
    Email author
  1. 1.School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangChina
  3. 3.College of BiotechnologyJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations