Advertisement

Long-term chromium picolinate supplementation improves colostrum profile of Santa Ines ewe

  • Thiago F. V. Bompadre
  • Débora B. Moretti
  • Gabriel Z. Sakita
  • Egon H. Ieda
  • Maria I. V. Martinez
  • Elisabete A. N. Fernandes
  • Raul Machado-Neto
  • Adibe L. Abdalla
  • Helder LouvandiniEmail author
Article
  • 32 Downloads

Abstract

Chromium (Cr) is a micromineral that is involved in the metabolism of carbohydrates, lipids, ammonia, and nucleic acids; thus, its supplementation can influence the nutritional status of ruminants, and consequently, colostrum profile, since this secretion depends on products secreted by the mammary gland and elements of the maternal bloodstream. The present study investigated the influence of supplementation with Cr bound to organic molecule on the nutritional, immune, and antioxidant quality of ewe colostrum. Thirty-two multiparous Santa Ines ewes (55.3 ± 8.00 kg body weight) were randomly assigned into four groups: T1 (0.0 mg of chromium picolinate (CrPic) supplementation per ewe, n = 8), T2 (0.15 mg of CrPic per ewe, n = 9), T3 (0.30 mg of CrPic per ewe, n = 7), and T4 (0.45 mg of CrPic per ewe, n = 8). Supplementation was supplied during the breeding season, pregnancy, and lactation. Shortly after calving, the first milking colostrum was collected to determine its chemical composition, activity of lysozyme, lactoperoxidase, ceruloplasmin, catalase, glutathione peroxidase, and oxygen radical absorbance capacity. The results show that lactoperoxidase activity decreased with CrPic supplementation (P < 0.01), revealing that this micromineral reduces an important component of defense mechanism in the body. Therefore, the results of this work show that supplementation with chromium picolinate influences colostrum quality.

Keywords

Antioxidants Chemical composition Chrome Milk secretion Ovine 

Notes

Funding Information

Authors are indebted to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with Ethical Standards

The project was approved by the Ethics Committee on Animal Use (CENA/USP—007-2016) and conducted in accordance with the rules of Waste Management of ESALQ/USP.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Goff JP (2017) Mineral absorption mechanisms, mineral interactions that affect acid – base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 101:2763–2813.  https://doi.org/10.3168/jds.2017-13112 CrossRefGoogle Scholar
  2. 2.
    Vincent JB (2001) The bioinorganic chemistry of chromium (III). Polyhedron. 20:1–26.  https://doi.org/10.1016/S0277-5387(00)00624-0 CrossRefGoogle Scholar
  3. 3.
    Boleman SL, Boleman SJ, Bidner TD, Southern LL, Ward TL, Pontif JE, Pike M (1995) Effect of chromium picolinate on growth, body composition, and tissue accretion in pigs. J Anim Sci 73:2033–2042.  https://doi.org/10.2527/1995.7372033x CrossRefGoogle Scholar
  4. 4.
    Kim YH, Han IK, Choi YJ, Shin IS, Cjae BJ, Kang TH (1996) Effects of dietary levels of chromium picolinate on growth performance, carcass quality and serum traits in broiler chicks. Asian Australas J Anim Sci 9:341–347.  https://doi.org/10.5713/ajas.1996.341 CrossRefGoogle Scholar
  5. 5.
    Lien TF, Wu CP, Wang BJ, Shiao MS, Shiao TY, Lin BH, Lu JJ, Hu CY (2001) Effect of supplemental levels of chromium picolinate on the growth performance, serum traits, carcass characteristics and lipid metabolism of growing-finishing pigs. Anim Sci 72:289–296.  https://doi.org/10.1017/S1357729800055788
  6. 6.
    Nikkhan A, Mirzaei M, Khorvash M, Rahmani R, Ghosbani GR (2010) Chromium improves production and alters metabolism of early lactation cows in summer. J Anim Physiol Anim Nutr 95:81–89.  https://doi.org/10.1111/j.1439-0396.2010.01007.x Google Scholar
  7. 7.
    Campbell S, Siegel M, Knowlton BJ (1977) Sheep immunoglobulins and their transmission to the neonatal lamb. N Z Vet J 25:361–365.  https://doi.org/10.1080/00480169.1977.34458 CrossRefGoogle Scholar
  8. 8.
    Abbas AK, Lichtman AH (2007) Imunologia básica, 2nd edn. Elsevier, Rio de JaneiroGoogle Scholar
  9. 9.
    Lima AL, Moretti DB, Nordi WM, Pauletti P, Susin I, Machado-Neto R (2013) Electrophoretic profile of serum proteins of goat kids fed with bovine colostrum in natura and lyophilized. Small Rumin Res 113:278–282.  https://doi.org/10.1016/j.smallrumres.2013.02.013 CrossRefGoogle Scholar
  10. 10.
    Machado Neto R, Paker I, Menten JFM, Lavorenti A (2001) Effect of breed, diet, period and lactation numbers on immunoglobulin G concentration in swine. Pesq Agrop Brasileira 36:1295–1299.  https://doi.org/10.1590/S0100-204X2001001000012 CrossRefGoogle Scholar
  11. 11.
    Boland TM, Brophy PO, Callan JJ, Quinn PJ, Nowakwski P, Crosby TF (2005) The effects of mineral supplementation to ewes in late pregnancy on colostrum yield and immunoglobulin G absorption in their lambs. Livest Prod Sci 97:141–150.  https://doi.org/10.1016/j.livprodsci.2005.03.004 CrossRefGoogle Scholar
  12. 12.
    Raimondo RFS, Miyiashiro SI, Mori CS, Birgel Junior EH (2013) Proteínas do soro lácteo de vacas da raça Jersey durante a lactação. Pesqui Vet Bras 33:119–125.  https://doi.org/10.1590/S0100-736X2013000100022 CrossRefGoogle Scholar
  13. 13.
    Albera E, Kankofer M (2009) Antioxidants in colostrum and milk of sows and cows. Reprod Domest Anim 44:606–611.  https://doi.org/10.1111/j.1439-0531.2007.01027.x CrossRefGoogle Scholar
  14. 14.
    Pandey NN, Dar AA, Mondal DB, Nagaraja L (2011) Bovine colostrum: a veterinary nutraceutical. J Vet Med Anim Health 3:31–35.  https://doi.org/10.5897/JVMAH.8DB11DE3503 Google Scholar
  15. 15.
    Przybylska J, Albera E, Kankofer M (2007) Antioxidants in bovine colostrum. Reprod Domest Anim 42:402–409.  https://doi.org/10.1111/j.1439-0531.2006.00799.x CrossRefGoogle Scholar
  16. 16.
    Zarban A, Taheri F, Chahkandi T, Sharifzadeh G, Khorashadizadeh M (2009) Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk. J Clin Biochem Nutr 45:150–154.  https://doi.org/10.3164/jcbn.08-233 CrossRefGoogle Scholar
  17. 17.
    Zhou B, Wang H, Luo G, Wang J (2013) Effect of dietary yeast chromium and L-carnitine on lipid metabolism of sheep. Biol Trace Elem Res 155:221–227.  https://doi.org/10.1007/s12011-013-9790-9 CrossRefGoogle Scholar
  18. 18.
    Sahin K, Sahin N, Kucuk O (2003) Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32°C). Nutr Res 23:225–238.  https://doi.org/10.1016/S0271-5317(02)00513-4 CrossRefGoogle Scholar
  19. 19.
    National Research Council (2007) Nutrient requirements of small ruminants. National Academies Press, Washington, DC, p 256Google Scholar
  20. 20.
    Association of Official Analytical Chemists (2016) Official methods of analysis, twentieth ed. AOAC, ArlingtonGoogle Scholar
  21. 21.
    Mancini G, Carbonara AO, Hermans JF (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochem. 2:253–254.  https://doi.org/10.1016/0019-2791(65)90004-2 CrossRefGoogle Scholar
  22. 22.
    Reinhold JG (1953) Total protein, albumin and globulin. In: Standard methods of clinical chemistry. Academic Press, New York, pp 88–97Google Scholar
  23. 23.
    Rice EV, Wagman E, Takenaka Y (1963) Ceruloplasmin assay in serum: standardization of ceruloplasmin activity in terms of international enzyme units. Stand Methods Clin Chem 4:39–47.  https://doi.org/10.1016/B978-1-4831-9685-5.50012-1 CrossRefGoogle Scholar
  24. 24.
    Mansson-Rahemtulla B, Baldone DC, Pruitt KM, Rahemtulla F (1986) Specific assays for peroxidases in human saliva. Arch Oral Biol 31:661–668.  https://doi.org/10.1016/0003-9969(86)90095-6 CrossRefGoogle Scholar
  25. 25.
    Parry RM, Chandau RC, Shanani RM (1965) A rapid and sensitive assay of muramidase. Proc Soc Exp Biol Med 119:384–386.  https://doi.org/10.3181/00379727-119-30188 CrossRefGoogle Scholar
  26. 26.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333.  https://doi.org/10.1016/S0076-6879(81)77046-0 CrossRefGoogle Scholar
  27. 27.
    Iwase T, Tajima A, Sugimoto S, Okuda K, Hironaka I, KamataY TK, MizunoeIwase Y (2013) A simple assay for measuring catalase activity: a visual approach. Nat Sci Rep 3:3081–3084.  https://doi.org/10.1038/srep03081 CrossRefGoogle Scholar
  28. 28.
    Statistical Analysis System (2014) SAS Institute Inc 9.4 version. Cary, New York City, USA. ISBN: 1612905641 9781612905648Google Scholar
  29. 29.
    Hayirli A, Bremmer DR, Bertics SJ, Socha MT, Grummer RR (2001) Effect of chromium supplementation on production and metabolic parameters in periparturient dairy cows. J Dairy Sci 84:1218–1230.  https://doi.org/10.3168/jds.S0022-0302(01)74583-3 CrossRefGoogle Scholar
  30. 30.
    Lloyd KE, Fellner V, McLeod SJ, Fry RS, Krafka K, Lamptey A, Sspears JW (2010) Effects of supplementing dairy cows with chromium propionate on milk and tissue chromium concentrations. J Dairy Sci 93:4774–4780.  https://doi.org/10.3168/jds.2010-3198 CrossRefGoogle Scholar
  31. 31.
    Dallago BSL, Lima BA, Braz SV, Mustafa VS, McManus C, Paim TP, Campeche A, Gomes EF, Louvandini H (2016) Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic) - supplemented lambs. J Trace Elem Med Biol 35:30–35.  https://doi.org/10.1016/j.jtemb.2016.01.004
  32. 32.
    Laschinsky N, Kottwitz K, Freund B, Dresow B, Fischer R, Nielsen P (2012) Bioavailability of chromium (III)-supplements in rats and humans. Biomet Int J Role Met Ions Biol Biochem Med 25:1051–1060.  https://doi.org/10.1007/s10534-012-9571-5 Google Scholar
  33. 33.
    Kottwitz K, Laschinsky N, Fischer R, Nielsen P (2009) Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats. Biomet Int J Role Met Ions Biol Biochem Med 22:289–295.  https://doi.org/10.1007/s10534-008-9165-4 Google Scholar
  34. 34.
    Vincent JB (2000) The biochemistry of chromium. J Nutr 130:715–718.  https://doi.org/10.1093/jn/130.4.715
  35. 35.
    Swanson TJ, Hammer CJ, Luther JS, Carlson DB, Taylor JB, Redmer DA, Neville TL, Reed JJ, Reynolds LP, Caton JS, Vonnahme KA (2008) Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs. J Anim Sci 86:2415–2423.  https://doi.org/10.2527/jas.2008-0996 CrossRefGoogle Scholar
  36. 36.
    van de Ligt JL, Lindemann MD, Harmon RJ, Monegue HJ, Cromwell GL (2002) Effect of chromium tripicolinate supplementation on porcine immune response during the periparturient and neonatal period. J Anim Sci 80:456–466.  https://doi.org/10.2527/2002.802456x CrossRefGoogle Scholar
  37. 37.
    Dallago BSL, McManus C, Caldeira DF, Campeche A, Burtet RT, Paim TP, Gomes EF, Branquinho RP, Braz SV, Louvandini H (2013) Humoral and cellular immunity in chromium picolinate supplemented lambs. Biol Trace Elem Res 154:196–201.  https://doi.org/10.1007/s12011-013-9731-7 CrossRefGoogle Scholar
  38. 38.
    Racek J, Trefil L, Rajdl D, Mudrova V, Hunter D, Senft V (2006) Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res 109:215–230.  https://doi.org/10.1385/BTER:109:3:215
  39. 39.
    Rauw WM (2012) Immune response from a resource allocation perspective. Front Genet 3:267.  https://doi.org/10.3389/fgene.2012.00267 CrossRefGoogle Scholar
  40. 40.
    Król J, Litwinczuk Z, Brodziak A, Barlowska J (2010) Lactoferrin, lysozyme and immunoglobulin G content in milk of four breeds of cows managed under intensive production system. Pol J Vet Sci 13:357–361Google Scholar
  41. 41.
    Pellegrino L, Tirelli A (2000) A sensitive HPLC method to detect hen’s egg white lysozyme in milk and dairy products. Int Dairy J 10:435–442.  https://doi.org/10.1016/S0958-6946(00)00065-0 CrossRefGoogle Scholar
  42. 42.
    Chen X, Scholl TO, Leskiw MJ, Donaldson MR, Stein TP (2003) Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. J Clin Endocrinol Metab 88:5963–5968.  https://doi.org/10.1210/jc.2003-030544 CrossRefGoogle Scholar
  43. 43.
    Paolisso G, Giugliano D (1996) Oxidative stress and insulin action: is there a relationship? Diabetologia. 39:357–363CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thiago F. V. Bompadre
    • 1
  • Débora B. Moretti
    • 2
  • Gabriel Z. Sakita
    • 1
  • Egon H. Ieda
    • 1
  • Maria I. V. Martinez
    • 3
  • Elisabete A. N. Fernandes
    • 3
  • Raul Machado-Neto
    • 2
  • Adibe L. Abdalla
    • 1
  • Helder Louvandini
    • 1
    Email author
  1. 1.Animal Science Laboratory, Center for Nuclear Energy in AgricultureUniversity of Sao PauloPiracicabaBrazil
  2. 2.Animal Science Department, Luiz de Queiroz College of AgricultureUniversity of Sao PauloPiracicabaBrazil
  3. 3.Radioisotopes Laboratory, Centre for Nuclear Energy in AgricultureUniversity of Sao PauloPiracicabaBrazil

Personalised recommendations