Effects of Chromium and Carnitine Co-supplementation on Body Weight and Metabolic Profiles in Overweight and Obese Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial

  • Mehri Jamilian
  • Fatemeh Foroozanfard
  • Elham Kavossian
  • Mersedeh Kia
  • Esmat Aghadavod
  • Elaheh Amirani
  • Zatollah AsemiEmail author


The primary aim of our study was to determine the influence of taking chromium plus carnitine on insulin resistance, with a secondary objective of evaluating the influences on lipid profiles and weight loss in overweight subjects with polycystic ovary syndrome (PCOS). In a 12-week randomized, double-blind, placebo-controlled clinical trial, 54 overweight women were randomly assigned to receive either supplements (200 μg/day chromium picolinate plus 1000 mg/day carnitine) or placebo (27/each group). Chromium and carnitine co-supplementation decreased weight (− 3.6 ± 1.8 vs. − 1.0 ± 0.7 kg, P < 0.001), BMI (− 1.3 ± 0.7 vs. − 0.3 ± 0.3 kg/m2, P < 0.001), fasting plasma glucose (FPG) (− 5.1 ± 6.0 vs. − 1.1 ± 4.9 mg/dL, P = 0.01), insulin (− 2.0 ± 1.4 vs. − 0.2 ± 1.2 μIU/mL, P < 0.001), insulin resistance (− 0.5 ± 0.4 vs. − 0.04 ± 0.3, P < 0.001), triglycerides (− 18.0 ± 25.2 vs. + 5.5 ± 14.4 mg/dL, P < 0.001), total (− 17.0 ± 20.3 vs. + 3.6 ± 12.0 mg/dL, P < 0.001), and LDL cholesterol (− 13.3 ± 19.2 vs. + 1.4 ± 13.3 mg/dL, P = 0.002), and elevated insulin sensitivity (+ 0.007 ± 0.005 vs. + 0.002 ± 0.005, P < 0.001). In addition, co-supplementation upregulated peroxisome proliferator-activated receptor gamma (P = 0.02) and low-density lipoprotein receptor expression (P = 0.02). Overall, chromium and carnitine co-supplementation for 12 weeks to overweight women with PCOS had beneficial effects on body weight, glycemic control, lipid profiles except HDL cholesterol levels, and gene expression of PPAR-γ and LDLR. Clinical trial registration number: IRCT20170513033941N38.


Carnitine Chromium Body weight Metabolic profiles Polycystic ovary syndrome 



The authors would like to thank the staff of Taleghani Clinic (Arak, Iran) for their assistance in this project.

Authors’ Contributions

ZA contributed in conception, design, statistical analysis, and drafting of the manuscript. MJ, FF, EK, EA, MK, EA, and AM contributed in data collection and manuscript drafting. All authors approved the final version for submission. ZA supervised the study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Polak K, Czyzyk A, Simoncini T, Meczekalski B (2017) New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Investig 40:1–8. CrossRefGoogle Scholar
  2. 2.
    Azziz R, Carmina E, Chen Z, Dunaif A, Laven JSE, Legro RS, Lizneva D, Natterson-Horowtiz B, Teede HJ, Yildiz BO (2016) Polycystic ovary syndrome. Nat Rev Dis Primers 2:16057. CrossRefGoogle Scholar
  3. 3.
    Harris HR, Terry KL (2016) Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract 2:14. CrossRefGoogle Scholar
  4. 4.
    Condorelli RA, Calogero AE, Di Mauro M et al (2018) Androgen excess and metabolic disorders in women with PCOS: beyond the body mass index. J Endocrinol Investig 41:383–388CrossRefGoogle Scholar
  5. 5.
    Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E (2015) American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome - part 2. Endocr Pract 21:1415–1426CrossRefGoogle Scholar
  6. 6.
    Wild RA, Rizzo M, Clifton S, Carmina E (2011) Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril 95:1073–1079.e1071-1011CrossRefGoogle Scholar
  7. 7.
    Baranova A, Tran TP, Afendy A, Wang L, Shamsaddini A, Mehta R, Chandhoke V, Birerdinc A, Younossi ZM (2013) Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS). J Transl Med 11:133. CrossRefGoogle Scholar
  8. 8.
    Xue Y, Xu P, Xue K, Duan X, Cao J, Luan T, Li Q, Gu L (2017) Effect of vitamin D on biochemical parameters in polycystic ovary syndrome women: a meta-analysis. Arch Gynecol Obstet 295:487–496CrossRefGoogle Scholar
  9. 9.
    Foroozanfard F, Jamilian M, Jafari Z et al (2015) Effects of zinc supplementation on markers of insulin resistance and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Exp Clin Endocrinol Diabetes 123:215–220CrossRefGoogle Scholar
  10. 10.
    Ringseis R, Keller J, Eder K (2012) Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 51:1–18CrossRefGoogle Scholar
  11. 11.
    Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319CrossRefGoogle Scholar
  12. 12.
    Suksomboon N, Poolsup N, Yuwanakorn A (2014) Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J Clin Pharm Ther 39:292–306CrossRefGoogle Scholar
  13. 13.
    Asadi M, Rahimlou M, Shishehbor F, Mansoori A (2019) The effect of l-carnitine supplementation on lipid profile and glycaemic control in adults with cardiovascular risk factors: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Nutr.
  14. 14.
    Cha YS (2008) Effects of L-carnitine on obesity, diabetes, and as an ergogenic aid. Asia Pac J Clin Nutr 17(Suppl 1):306–308Google Scholar
  15. 15.
    Jamilian M, Asemi Z (2015) Chromium supplementation and the effects on metabolic status in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Ann Nutr Metab 67:42–48CrossRefGoogle Scholar
  16. 16.
    Komorowski J, Juturu V (2005) Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid profile: a randomized, placebo-controlled, double-blind trial of supplementation in subjects with impaired glucose tolerance. Diabetes Care 28:712–713CrossRefGoogle Scholar
  17. 17.
    Lee BJ, Lin JS, Lin YC, Lin PT (2016) Effects of L-carnitine supplementation on lipid profiles in patients with coronary artery disease. Lipids Health Dis 15:107. CrossRefGoogle Scholar
  18. 18.
    Samimi M, Jamilian M, Ebrahimi FA, Rahimi M, Tajbakhsh B, Asemi Z (2016) Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol 84:851–857CrossRefGoogle Scholar
  19. 19.
    Zhou B, Wang H, Luo G, Niu R, Wang J (2013) Effect of dietary yeast chromium and L-carnitine on lipid metabolism of sheep. Biol Trace Elem Res 155:221–227CrossRefGoogle Scholar
  20. 20.
    Wang J, Du R, Qin J et al (2003) Effect of yeast chromium and L-carnitine on lipid metabolism of broiler chickens. Asian Austral J Anim 16:1809–1815CrossRefGoogle Scholar
  21. 21.
    Tian H, Guo X, Wang X et al (2013) Chromium picolinate supplementation for overweight or obese adults. Cochrane Database Syst Rev:Cd010063.
  22. 22.
    Ainsworth BE, Haskell WL, Whitt MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32:S498–S504CrossRefGoogle Scholar
  23. 23.
    Pisprasert V, Ingram KH, Lopez-Davila MF, Munoz AJ, Garvey WT (2013) Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes Care 36:845–853CrossRefGoogle Scholar
  24. 24.
    Pooyandjoo M, Nouhi M, Shab-Bidar S, Djafarian K, Olyaeemanesh A (2016) The effect of (L-)carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 17:970–976CrossRefGoogle Scholar
  25. 25.
    Onakpoya I, Posadzki P, Ernst E (2013) Chromium supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. Obes Rev 14:496–507CrossRefGoogle Scholar
  26. 26.
    Fazelian S, Rouhani MH, Bank SS, Amani R (2017) Chromium supplementation and polycystic ovary syndrome: a systematic review and meta-analysis. J Trace Elem Med Biol 42:92–96CrossRefGoogle Scholar
  27. 27.
    Tang XL, Sun Z, Gong L (2018) Chromium supplementation in women with polycystic ovary syndrome: systematic review and meta-analysis. J Obstet Gynaecol Res 44:134–143CrossRefGoogle Scholar
  28. 28.
    Sundaram B, Singhal K, Sandhir R (2012) Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes. Biofactors 38:59–68CrossRefGoogle Scholar
  29. 29.
    Xu Y, Jiang W, Chen G et al (2017) L-carnitine treatment of insulin resistance: a systematic review and meta-analysis. Adv Clin Exp Med 26:333–338Google Scholar
  30. 30.
    Vidal-Casariego A, Burgos-Pelaez R, Martinez-Faedo C et al (2013) Metabolic effects of L-carnitine on type 2 diabetes mellitus: systematic review and meta-analysis. Exp Clin Endocrinol Diabetes 121:234–238CrossRefGoogle Scholar
  31. 31.
    Derosa G, Maffioli P, Ferrari I, D’Angelo A, Fogari E, Palumbo I, Randazzo S, Cicero AFG (2011) Comparison between orlistat plus l-carnitine and orlistat alone on inflammation parameters in obese diabetic patients. Fundam Clin Pharmacol 25:642–651CrossRefGoogle Scholar
  32. 32.
    Derosa G, Cicero AF, Gaddi A, Mugellini A, Ciccarelli L, Fogari R (2003) The effect of L-carnitine on plasma lipoprotein(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther 25:1429–1439CrossRefGoogle Scholar
  33. 33.
    Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR (2013) Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr 110:197–205CrossRefGoogle Scholar
  34. 34.
    Pala R, Genc E, Tuzcu M, Orhan C, Sahin N, Er B, Cinar V, Sahin K (2018) L-carnitine supplementation increases expression of PPAR-gamma and glucose transporters in skeletal muscle of chronically and acutely exercised rats. Cell Mol Biol (Noisy-le-grand) 64:1–6CrossRefGoogle Scholar
  35. 35.
    Zheng JL, Luo Z, Zhuo MQ, Pan YX, Song YF, Hu W, Chen QL (2014) Dietary L-carnitine supplementation increases lipid deposition in the liver and muscle of yellow catfish (Pelteobagrus fulvidraco) through changes in lipid metabolism. Br J Nutr 112:698–708CrossRefGoogle Scholar
  36. 36.
    Caviglia D, Scarabelli L, Palmero S (2004) Effects of carnitines on rat sertoli cell protein metabolism. Horm Metab Res 36:221–225CrossRefGoogle Scholar
  37. 37.
    Matsusue K, Peters JM, Gonzalez FJ (2004) PPARbeta/delta potentiates PPARgamma-stimulated adipocyte differentiation. FASEB J 18:1477–1479CrossRefGoogle Scholar
  38. 38.
    Sharma AK, Bharti S, Ojha S et al (2011) Up-regulation of PPARgamma, heat shock protein-27 and -72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 106:1713–1723CrossRefGoogle Scholar
  39. 39.
    Fernyhough ME, Okine E, Hausman G, Vierck JL, Dodson MV (2007) PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol 33:367–378CrossRefGoogle Scholar
  40. 40.
    Jamilian M, Zadeh Modarres S, Amiri Siavashani M, Karimi M, Mafi A, Ostadmohammadi V, Asemi Z (2018) The influences of chromium supplementation on glycemic control, markers of cardio-metabolic risk, and oxidative stress in infertile polycystic ovary syndrome women candidate for in vitro fertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 185:48–55CrossRefGoogle Scholar
  41. 41.
    Paiva AN, Lima JG, Medeiros AC et al (2015) Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: a randomized clinical study. J Trace Elem Med Biol 32:66–72CrossRefGoogle Scholar
  42. 42.
    Malaguarnera M, Vacante M, Avitabile T, Malaguarnera M, Cammalleri L, Motta M (2009) L-carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes. Am J Clin Nutr 89:71–76CrossRefGoogle Scholar
  43. 43.
    Strijbis K, Vaz FM, Distel B (2010) Enzymology of the carnitine biosynthesis pathway. IUBMB Life 62:357–362Google Scholar
  44. 44.
    Lee H-G, Yin J-L, Xu C-X, Hong ZS, Lee ZH, Jin YC, Choi CW, Lee DH, Kim KH, Choi YJ (2011) Effects of the combination of glucose, chromium picolinate, and vitamin c on lipid metabolism in steers. Asian Australas J Anim Sci 24:1674–1680CrossRefGoogle Scholar
  45. 45.
    Patalay M, Lofgren IE, Freake HC, Koo SI, Fernandez ML (2005) The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J Nutr 135:735–739CrossRefGoogle Scholar
  46. 46.
    Woodworth JC, Tokach MD, Nelssen JL, Goodband RD, Dritz SS, Koo SI, Minton JE, Owen KQ (2007) Influence of dietary L-carnitine and chromium picolinate on blood hormones and metabolites of gestating sows fed one meal per day. J Anim Sci 85:2524–2537CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Traditional and Complementary Medicine Research CenterArak University of Medical SciencesArakIran
  2. 2.Gametogenesis Research CenterKashan University of Medical SciencesKashanIran
  3. 3.Department of Midwifery, Gorgan BranchIslamic Azad UniversityGorganIran
  4. 4.Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran

Personalised recommendations