Trace Elements Associated with Systemic Lupus Erythematosus and Insulin Resistance

  • Eliel Marcio Pedro
  • Lorena Flor da Rosa Franchi Santos
  • Bruna Miglioranza Scavuzzi
  • Tatiana Mayumi Veiga Iriyoda
  • Tiago Severo Peixe
  • Marcell Alysson Batiste Lozovoy
  • Edna Maria Vissoci Reiche
  • Isaias Dichi
  • Andréa Name Colado SimãoEmail author
  • Maria Josefa Santos


Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease of multifactorial origin. Studies have shown that trace elements such as zinc and copper may help maintain optimum function of the immune system and metabolism, while toxic metals such as lead may increase systemic autoimmunity. The current study aimed to assess the relationship between serum concentration of lithium (Li), vanadium (V), copper (Cu), zinc (Zn), molybdenum (Mo), cadmium (Cd), and lead (Pb) and SLE diagnosis, disease activity measured by SLE disease activity index (SLEDAI) and insulin resistance (IR). This case-control, cross-sectional study included 225 patients, 120 healthy controls, and 105 SLE patients. Serum concentration of Li, V, Cu, Zn, Mo, Cd, and Pb was measured. Serum concentrations of V (p < 0.001), Zn (p < 0.001), and Pb (p < 0.001) were lower and Mo (p < 0.001) and Li (p < 0.001) were higher in patients with SLE compared to healthy controls. SLE diagnosis was associated with higher serum Li (p < 0.001) concentration and lower V (p < 0.001), Zn (p = 0.003), and Pb (p = 0.020). Toxic metals and trace elements were not associated with disease activity. Levels of Cd were higher in patients with IR (p = 0.042). There was no significant association between IR and the other metals. The results indicate that SLE patients have different profiles of trace elements and toxic metals compared to healthy controls. While some toxic metals and trace elements were found to be associated with SLE diagnosis, they had no effect on disease activity and IR.


SLE disease activity index (SLEDAI) Heavy metals Trace elements Insulin resistance Glucose homeostasis 


Funding Information

This study was supported by Laboratory of Atomic Emission Spectrometry (LAES) from State University of Londrina- Parana State, Brazil.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Kamen DL (2014) Environmental influences on systemic lupus erythematosus expression. Rheum Dis Clin N Am 40:401–412. CrossRefGoogle Scholar
  2. 2.
    McMahon M, Hahn BH, Skaggs BJ (2011) Systemic lupus erythematosus and cardiovascular disease: prediction and potential for therapeutic intervention. Expert Rev Clin Immunol 7:227–241. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121. CrossRefPubMedGoogle Scholar
  4. 4.
    Chowdhury B, Chandra R (1987) Biological and health implications of toxic heavy metal and essential trace element interactions. Prog Food Nutr Sci 11:55–113PubMedGoogle Scholar
  5. 5.
    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gilbert KM, Rowley B, Gomez-Acevedo H, Blossom SJ (2011) Coexposure to mercury increases immunotoxicity of trichloroethylene. Toxicol Sci 119:281–292. CrossRefPubMedGoogle Scholar
  7. 7.
    Hudson C, Cao L, Kasten-Jolly J, Kirkwood J, Lawrence D (2003) Susceptibility of lupus-prone Nzm mouse strains to lead exacerbation of systemic lupus erythematosus symptoms. J Toxicol Environ Health A 66:895–918. CrossRefPubMedGoogle Scholar
  8. 8.
    Leffel EK, Wolf C, Poklis A, White KL (2003) Drinking water exposure to cadmium, an environmental contaminant, results in the exacerbation of autoimmune disease in the murine model. Toxicology 188:233–250CrossRefGoogle Scholar
  9. 9.
    Durak I, Kavutcu M, Canbolaţ O et al (1994) Concentrations of some major and minor elements in larynx tissues with and without cancer. Biometals 7:45–48CrossRefGoogle Scholar
  10. 10.
    Taysi S, Gulcin I, Sari RA, Kuskay S, Bakan N (2003) Trace elements and disease activity score in patients with rheumatoid arthritis. Pain Clin 15:435–439. CrossRefGoogle Scholar
  11. 11.
    Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349CrossRefGoogle Scholar
  12. 12.
    Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12:646–652. CrossRefPubMedGoogle Scholar
  13. 13.
    Ho E, Courtemanche C, Ames BN (2003) Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J Nutr 133:2543–2548CrossRefGoogle Scholar
  14. 14.
    Ferns GAA, Lamb DJ, Taylor A (1997) The possible role of copper ions in atherogenesis: the blue Janus. Atherosclerosis 133:139–152. CrossRefPubMedGoogle Scholar
  15. 15.
    Sahebari M, Abrishami-Moghaddam M, Moezzi A, Ghayour-Mobarhan M, Mirfeizi Z, Esmaily H, Ferns G (2014) Association between serum trace element concentrations and the disease activity of systemic lupus erythematosus. Lupus 23:793–801. CrossRefPubMedGoogle Scholar
  16. 16.
    Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O (2003) Cu/Zn superoxide dismutase plays important role in immune response. J Immunol 170:2993–3001CrossRefGoogle Scholar
  17. 17.
    Panchal SK, Wanyonyi S, Brown L (2017) Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr Hypertens Rep 19:10. CrossRefPubMedGoogle Scholar
  18. 18.
    Kucharz EJ, Sierakowski SJ, Goodwin JS (1993) Lithium in vitro enhances interleukin-2 production by T cells from patients with systemic lupus erythematosus. Immunopharmacol Immunotoxicol 15:515–523. CrossRefPubMedGoogle Scholar
  19. 19.
    Federmann M, Morell B, Graetz G, Wyss M, Elsner P, von Thiessen R, Wuthrich B, Grob D (1994) Hypersensitivity to molybdenum as a possible trigger of ANA-negative systemic lupus erythematosus. Ann Rheum Dis 53:403–405CrossRefGoogle Scholar
  20. 20.
    Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2:70. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chunhabundit R (2016) Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol Res 32:65–72. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Miyake CNH, Gualano B, Dantas WS, Pereira RT, Neves W, Zambelli VO, Shinjo SK, Pereira RM, Silva ER, Sá-Pinto AL, Borba E, Roschel H, Bonfá E, Benatti FB (2018) Increased insulin resistance and glucagon levels in mild/inactive systemic lupus erythematosus patients despite normal glucose tolerance. Arthritis Care Res 70:114–124. CrossRefGoogle Scholar
  23. 23.
    Chung CP, Avalos I, Oeser A, Gebretsadik T, Shintani A, Raggi P, Michael Stein C (2007) High prevalence of the metabolic syndrome in patients with systemic lupus erythematosus: association with disease characteristics and cardiovascular risk factors. AnnRheumDis 66:208–214. CrossRefGoogle Scholar
  24. 24.
    Lozovoy M, Simão A, Oliveira S, Iryioda TMV, Panis C, Cecchini R, Dichi I (2013) Relationship between iron metabolism, oxidative stress, and insulin resistance in patients with systemic lupus erythematosus. Scand J Rheumatol 42:303–310. CrossRefPubMedGoogle Scholar
  25. 25.
    Lozovoy M, Simão A, Morimoto H, Iryioda TMV, Panis C, Reiche EMV, Borelli SD, Oliveira SR, Cecchini R, Dichi I (2014) Hypertension is associated with serologically active disease in patients with systemic lupus erythematosus: role of increased Th1/Th2 ratio and oxidative stress. Scand J Rheumatol 43:59–62. CrossRefPubMedGoogle Scholar
  26. 26.
    Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48–49:10–13. CrossRefPubMedGoogle Scholar
  27. 27.
    Bombardier C, Gladman D, Urowitz M et al (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis studies in SLE. Arthritis Rheum 35:630–640CrossRefGoogle Scholar
  28. 28.
    Petri M, Genovese M, Engle E, Hochberg M (1991) Definition, incidence, and clinical description of flare in systemic lupus erythematosus: a prospective cohort study. Arthritis Rheum 34:937–944CrossRefGoogle Scholar
  29. 29.
    Reilly M, Wolfe M, Rhodes T et al (2004) Measures of insulin resistance add incremental value to the clinical diagnosis of metabolic syndrome in association with coronary atherosclerosis. Circulation 110:803–809CrossRefGoogle Scholar
  30. 30.
    International Conference On Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use; ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R 1), Complementary Guideline on Methodology dated 06 November 1996, incorporated in November 2005, LondonGoogle Scholar
  31. 31.
    Yilmaz A, Sari RA, Gundogdu M, Kose N, Dag E (2005) Trace elements and some extracellular antioxidant proteins levels in serum of patients with systemic lupus erythematosus. Clin Rheumatol 24:331–335. CrossRefPubMedGoogle Scholar
  32. 32.
    Tóth CN, Baranyai E, Csípő I, Tarr T, Zeher M, Posta J, Fábián I (2017) Elemental analysis of whole and protein separated blood serum of patients with systemic lupus erythematosus and Sjögren’s syndrome. Biol Trace Elem Res 179:14–22. CrossRefPubMedGoogle Scholar
  33. 33.
    Nossent J, Lester S, Rischmueller M, Zalewski P (2017) No zinc deficiency but a putative immunosuppressive role for labile Zn in patients with systemic autoimmune disease. Curr Rheumatol Rev 13:59–64. CrossRefPubMedGoogle Scholar
  34. 34.
    Caetano MC, Ortiz TT, Terreri MTSLR et al (2009) Inadequate dietary intake of children and adolescents with juvenile idiopathic arthritis and systemic lupus erythematosus. J Pediatr 85:509–515. CrossRefGoogle Scholar
  35. 35.
    Strickland FM, Hewagama A, Wu A, Sawalha AH, Delaney C, Hoeltzel MF, Yung R, Johnson K, Mickelson B, Richardson BC (2013) Diet influences expression of autoimmune associated genes and disease severity by epigenetic mechanisms in a transgenic lupus model. Arthritis Rheum 65:1872–1881. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Prasad A (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56:S20–S23. CrossRefPubMedGoogle Scholar
  38. 38.
    Beck FW, Prasad AS, Kaplan J, Fitzgerald JT, Brewer GJ (1997) Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Phys 272:E1002–E1007. CrossRefGoogle Scholar
  39. 39.
    Timmer RT, Sands JM (1999) Lithium intoxication. JASN 10:666–674PubMedGoogle Scholar
  40. 40.
    Shapiro HS (1998) Psychiatric side effects of medicines used in SLE. In: Aladjem H (ed) The challenges of lupus: insights and hope, 1st edn. Avery Publishing Group, New York, p 167Google Scholar
  41. 41.
    Liossis SNC, Kovacs B, Dennis G et al (1996) B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 98:2549–2557. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    De Sarno P, Axtell RC, Raman C et al (2008) Lithium prevents and ameliorates experimental autoimmune encephalomyelitis. J Immunol 181:338–345CrossRefGoogle Scholar
  43. 43.
    Tsave O, Petanidis S, Kioseoglou E, Yavropoulou MP, Yovos JG, Anestakis D, Tsepa A, Salifoglou A (2016) Role of vanadium in cellular and molecular immunology: association with immune-related inflammation and pharmacotoxicology mechanisms. Oxidative Med Cell Longev 2016:1–10. CrossRefGoogle Scholar
  44. 44.
    Ustarroz-Cano M, Garcia-Pelaez I, Cervantes-Yepez S, Lopez-Valdez N, Fortoul TI (2017) Thymic cytoarchitecture changes in mice exposed to vanadium. J Immunotoxicol 14:9–14. CrossRefPubMedGoogle Scholar
  45. 45.
    Campbell CA, Peet M, Ward NI (1988) Vanadium and other trace elements in patients taking lithium. Biol Psychiatry 24:775–781. CrossRefPubMedGoogle Scholar
  46. 46.
    Waterman SJ, El-Fawal HAN, Snyder CA (1994) Lead alters the immunogenicity of two neural proteins: a potential mechanism for the progression of lead-induced neurotoxicity. Environ Health Perspect 102:1052–1056CrossRefGoogle Scholar
  47. 47.
    El-Fawal HAN, Waterman SJ, De Feo A, Shamy MY (1999) Neuroimmunotoxicology: humoral assessment of neurotoxicity and autoimmune mechanisms. Environ Health Perspect 107:767–775. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ramírez-Sandoval R, Luévano-Rodríguez N, Rodríguez-Rodríguez M, Pérez-Pérez ME, Saldívar-Elias S, Gurrola-Carlos R, Avalos-Díaz E, Bollain-y-Goytia JJ, Herrera-Esparza R (2015) An animal model using metallic ions to produce autoimmune nephritis. J Immunol Res 2015:1–11. CrossRefGoogle Scholar
  49. 49.
    Drehmer M, Odegaard AO, Schmidt MI, Duncan BB, Cardoso LO, Matos SMA, Molina MCB, Barreto SM, Pereira MA (2017) Brazilian dietary patterns and the dietary approaches to stop hypertension (DASH) diet-relationship with metabolic syndrome and newly diagnosed diabetes in the ELSA-Brasil study. Diabetol Metab Syndr 9:13. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mugabo Y, Li L, Renier G (2010) The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev 6:27–34. CrossRefPubMedGoogle Scholar
  51. 51.
    Lin Y, Rathod D, Ho W, Caffrey J (2009) Cadmium exposure is associated with elevated blood C-reactive protein and fibrinogen in the U. S. Population: the third national health and nutrition examination survey (NHANES III, 1988-1994). Ann Epidemiol 19:592–596. CrossRefPubMedGoogle Scholar
  52. 52.
    Colacino JA, Arthur AE, Ferguson KK, Rozek LS (2014) Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress. Environ Res 131:6–12. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bui VQ, Stein AD, DiGirolamo AM et al (2012) Associations between serum C-reactive protein and serum zinc, ferritin, and copper in Guatemalan school children. Biol Trace Elem Res 148:154–160. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ghayour-Mobarhan M, Taylor A, New S, Lamb DJ, Ferns GAA (2005) Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem 42:364–375. CrossRefPubMedGoogle Scholar
  55. 55.
    Bo S, Gambino R, Berutti C, Milanesio N, Caropreso A, Gentile L, Cassader M, Cavallo-Perin P, Pagano GDM (2008) Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr 138:305–310CrossRefGoogle Scholar
  56. 56.
    Bigazzi PE (1994) Autoimmunity and heavy metals. Lupus 3:449–453CrossRefGoogle Scholar
  57. 57.
    Parker B, Bruce I (2013) SLE and metabolic syndrome. Lupus 22:1259–1266. CrossRefPubMedGoogle Scholar
  58. 58.
    Morel L (2017) Immunometabolism in systemic lupus erythematosus. Nat Rev Rheumatol 13:280–290. CrossRefPubMedGoogle Scholar
  59. 59.
    Perl A, Hanczko R, Lai ZW, Oaks Z, Kelly R, Borsuk R, Asara JM, Phillips PE (2015) Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics 11:1157–1174. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yin Y, Choi S-C, Xu Z, Perry DJ, Seay H, Croker BP, Sobel ES, Brusko TM, Morel L (2015) Normalization of CD4 + T cell metabolism reverses lupus. Sci Transl Med 7:274ra18. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sobel ES, Brusko TM, Butfiloski EJ, Hou W, Li S, Cuda CM, Abid AN, Reeves WH, Morel L (2011) Defective response of CD4(+) T cells to retinoic acid and TGFβ in systemic lupus erythematosus. Arthritis Res Ther 13:R106. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Jacobs SR, Herman CE, Maciver NJ et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486CrossRefGoogle Scholar
  63. 63.
    Peretz A, Neve J, Famaey J (1989) Effects of chronic and acute corticosteroid therapy on zinc and copper status in rheumatoid arthritis patients. J Trace Elem Electrolytes Health Dis 3:103–108PubMedGoogle Scholar
  64. 64.
    Haga HJ, Brun JG, Rekvig OP, Wetterberg L (1999) Seasonal variations in activity of systemic lupus erythematosus in a subarctic region. Lupus 8:269–273. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Eliel Marcio Pedro
    • 1
  • Lorena Flor da Rosa Franchi Santos
    • 2
  • Bruna Miglioranza Scavuzzi
    • 2
  • Tatiana Mayumi Veiga Iriyoda
    • 3
  • Tiago Severo Peixe
    • 4
  • Marcell Alysson Batiste Lozovoy
    • 4
  • Edna Maria Vissoci Reiche
    • 4
  • Isaias Dichi
    • 5
  • Andréa Name Colado Simão
    • 3
    • 4
    Email author
  • Maria Josefa Santos
    • 4
  1. 1.Department of ChemistryUniversity of LondrinaLondrinaBrazil
  2. 2.Research Laboratory of Applied ImmunologyUniversity of LondrinaParanáBrazil
  3. 3.Department of RheumatologyPontifícia Universidade Católica, PUCLondrinaBrazil
  4. 4.Department of Pathology, Clinical Analysis and ToxicologyUniversity of LondrinaLondrinaBrazil
  5. 5.Department of Internal MedicineUniversity of LondrinaLondrinaBrazil

Personalised recommendations