Advertisement

Oxidative Stress and Genomic Damage Induced In Vitro in Human Peripheral Blood by Two Preventive Treatments of Iron Deficiency Anemia

  • Rocío Celeste GambaroEmail author
  • Analía Seoane
  • Gisel Padula
Article
  • 60 Downloads

Abstract

Iron deficiency is the most prevalent nutritional deficiency and the main cause of anemia worldwide. Since children aged 6–24 months are among the most vulnerable groups at risk, daily supplementation with ferrous sulfate is recommended by the Argentine Society of Pediatrics as preventive treatment of anemia. However, a single weekly dose would have fewer adverse side effects and has been therefore proposed as an alternative treatment. Ferrous sulfate is known by its pro-oxidative properties, which may lead to increased oxidative stress as well as lipid, protein, and DNA damage. We analyzed the effect of daily and weekly preventive treatment of iron deficiency anemia (IDA) on cell viability, oxidative stress, chromosome, and cytomolecular damage in peripheral blood cultured in vitro. The study protocol included the following: untreated negative control; bleomycin, hydrogen peroxide, or ethanol-treated positive control; daily 0.14 mg ferrous sulfate–supplemented group; and weekly 0.55 mg ferrous sulfate–supplemented group. We assessed cell viability (methyl-thiazolyl-tetrazolium and neutral red assays), lipid peroxidation (thiobarbituric acid reactive substances assay), antioxidant response (superoxide dismutase and catalase enzyme analysis), chromosome damage (cytokinesis-blocked micronucleus cytome assay), and cytomolecular damage (comet assay). Lipid peroxidation, antioxidant response, and chromosome and cytomolecular damage decreased after weekly ferrous sulfate supplementation (p < 0.05), suggesting less oxygen free radical production and decreased oxidative stress and genomic damage. Such a decrease in oxidative stress and genomic damage in vitro positions weekly supplementation as a better alternative for IDA treatment. Further studies in vivo would be necessary to corroborate whether weekly supplementation could improve IDA preventive treatment compliance in children.

Keywords

Ferrous sulfate Anemia Iron deficiency Oxidative stress DNA damage Pediatrics 

Notes

Acknowledgements

The authors thank Adriana Di Maggio for careful manuscript translation and editing and César E. Bianchi for technical assistance.

Funding

This study was supported with funds provided by the National Scientific and Technical Research Council of Argentina (Grant No. 0657) and La Plata National University (Grants V246 and V249).

Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Declarations of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Watkins ML, Erickson JD, Thun MJ, Mulinare J, Heath CW (2000) Multivitamin use and mortality in a large prospective study. Am J Epidemiol 152:149–162CrossRefGoogle Scholar
  2. 2.
    Fenech M (2001) Recommended dietary allowances (RDAs) for genomic stability. Mutat Res 480–481:51–54CrossRefGoogle Scholar
  3. 3.
    Fenech M (2005) The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis 20:255–269.  https://doi.org/10.1093/mutage/gei040 CrossRefPubMedGoogle Scholar
  4. 4.
    Fenech MF (2014) Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control. In: Zappia V, Panico S, Russo GL, Budillon A, Della Ragione F (eds) Advances in nutrition and cancer. Springer Berlin Heidelberg, Berlin, pp 427–441.  https://doi.org/10.1007/978-3-642-38007-5_24 (accessed November 6, 2017)CrossRefGoogle Scholar
  5. 5.
    Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131:568S–579S discussion 580SCrossRefGoogle Scholar
  6. 6.
    Lönnerdal B (2017) Excess iron intake as a factor in growth, infections, and development of infants and young children. Am J Clin Nutr 106:1681S–1687S.  https://doi.org/10.3945/ajcn.117.156042 CrossRefPubMedGoogle Scholar
  7. 7.
    Aksu BY, Hasbal C, Himmetoglu S, Dincer Y, Koc EE, Hatipoglu S, Akcay T (2010) Leukocyte DNA damage in children with iron deficiency anemia: effect of iron supplementation. Eur J Pediatr 169:951–956.  https://doi.org/10.1007/s00431-010-1147-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Camaschella C (2017) New insights into iron deficiency and iron deficiency anemia. Blood Rev 31:225–233.  https://doi.org/10.1016/j.blre.2017.02.004 CrossRefPubMedGoogle Scholar
  9. 9.
    González HF, Malpeli A, Etchegoyen G, Lucero L, Romero F, Lagunas C, Lailhacar G, Olivares M, Uauy R (2007) Acquisition of visuomotor abilities and intellectual quotient in children aged 4–10 years: relationship with micronutrient nutritional status. Biol Trace Elem Res 120:92–101.  https://doi.org/10.1007/s12011-007-8023-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Clark SF (2008) Iron deficiency anemia. Nutr Clin Pract 23:128–141.  https://doi.org/10.1177/0884533608314536 CrossRefPubMedGoogle Scholar
  11. 11.
    International Nutritional Anemia Consultative Group: PAHO, UNICEF, WB, MI, USAID, FAO, Anemia prevention and control: what works-part 1 and part 2 (2003)Google Scholar
  12. 12.
    Encuesta Nacional de Nutrición y Salud. Documento de Resultados. Buenos Aires (2007). Ministerio de Salud de la Nación. http://www.msal.gov.ar (accessed 1 May 2017)
  13. 13.
    Apezteguia MC, Varea A, Disalvo L, Malpeli A, González HF (2008) Deficiencia de micronutrientes en niños de 1 a 3 años de familias de bajos ingresos en dos regiones de la provincia de Buenos Aires (Argentina). XLVI Reunión Anual de la Sociedad Latinoamericana de Investigación Pediátrica 38Google Scholar
  14. 14.
    Ianicelli J (2012) Prevalencia de anemia en lactantes menores de 6 meses asistidos en un centro de atención primaria de la ciudad de La Plata. Archivos Argentinos de Pediatria 110:120–125.  https://doi.org/10.5546/aap.2012.120 CrossRefPubMedGoogle Scholar
  15. 15.
    UNICEF/UNU/WHO (2001) Iron deficiency anaemia. Assessment, prevention and control. A guide for programme managers. WHO/NHD/01.3. Geneva: WHOGoogle Scholar
  16. 16.
    Sociedad Argentina de Pediatría. Archivos Argentinos de Pediatría (2011) Anemia ferropénica. Normas de diagnóstico y tratamiento 99(2):62–166Google Scholar
  17. 17.
    Zalles Cueto L, Rojas Meneces J, Rojas Soto S, Sejas E (2005) Eficacia de la suplementación semanal versus diaria con sulfato ferroso en niños escolares con anemia ferropenica. Gac Med Bol 28(2):3–8Google Scholar
  18. 18.
    Tee ES, Kandiah M, Awin N, Chong SM, Satgunasingam N, Kamarudin L, Milani S, Dugdale AE, Viteri FE (1999) School-administered weekly iron-folate supplements improve hemoglobin and ferritin concentrations in Malaysian adolescent girls. Am J Clin Nutr 69:1249–1256CrossRefGoogle Scholar
  19. 19.
    Agarwal KN, Gomber S, Bisht H, Som M (2003) Anemia prophylaxis in adolescent school girls by weekly or daily iron-folate supplementation. Indian Pediatr 40:296–301PubMedGoogle Scholar
  20. 20.
    Viteri FE, Ali F, Tujague J (1999) Long-term weekly iron supplementation improves and sustains nonpregnant women’s iron status as well or better than currently recommended short-term daily supplementation. J Nutr 129:2013–2020CrossRefGoogle Scholar
  21. 21.
    Peña Rosas JP, De Regil LM, Gomez Malave H, Flores Urrutia MC, Dowswell T (2015) Intermittent oral iron supplementation during pregnancy. In: The Cochrane Collaboration (ed), Cochrane Database of Systematic Reviews, John Wiley & Sons, Ltd, Chichester, UK.  https://doi.org/10.1002/14651858.CD009997.pub2 (accessed May 18, 2018)
  22. 22.
    Andersen HS, Gambling L, Holtrop G, McArdle HJ (2006) Maternal iron deficiency identifies critical windows for growth and cardiovascular development in the rat postimplantation embryo. J Nutr 136(5):1171–1177CrossRefGoogle Scholar
  23. 23.
    Viteri FE (1997) Iron supplementation for the control of iron deficiency in populations at risk. Nutr Rev 55(6):195–209CrossRefGoogle Scholar
  24. 24.
    Prá D, Franke SIR, Giulian R, Yoneama ML, Dias JF, Erdtmann B, Henriques JAP (2008) Genotoxicity and mutagenicity of iron and copper in mice. Biometals 21:289–297.  https://doi.org/10.1007/s10534-007-9118-3 CrossRefPubMedGoogle Scholar
  25. 25.
    Puntarulo S (2005) Iron, oxidative stress and human health. Mol Asp Med 26:299–312.  https://doi.org/10.1016/j.mam.2005.07.001 CrossRefGoogle Scholar
  26. 26.
    Franke SIR, Prá D, da Silva J, Erdtmann B, Henriques JAP (2005) Possible repair action of vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res Genet Toxicol Environ Mutagen 583:75–84.  https://doi.org/10.1016/j.mrgentox.2005.03.001 CrossRefGoogle Scholar
  27. 27.
    Prá D, Franke SIR, Henriques JAP, Fenech M (2012) Iron and genome stability: an update. Mutat Res- Fund Mol M 733:92–99.  https://doi.org/10.1016/j.mrfmmm.2012.02.001 CrossRefGoogle Scholar
  28. 28.
    Aslan M, Horoz M, Kocyigit A, Ozgonül S, Celik H, Celik M, Erel O (2006) Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia. Mutat Res-Fund Mol M 601:144–149.  https://doi.org/10.1016/j.mrfmmm.2006.06.013 CrossRefGoogle Scholar
  29. 29.
    Fenech MF (2010) Nutriomes and nutrient arrays - the key to personalised nutrition for DNA damage prevention and cancer growth control. Genome Integr 1:11.  https://doi.org/10.1186/2041-9414-1-11 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Berger J, Aguayo VM, Tellez W, Lujan C, Traissac P, San Miguel JL (1997) Weekly iron supplementation is as effective as 5 day per week iron supplementation in Bolivian school children living at high altitude. Eur J Clin Nutr 51(6):381–386CrossRefGoogle Scholar
  31. 31.
    Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124CrossRefGoogle Scholar
  32. 32.
    Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104.  https://doi.org/10.1038/nprot.2007.77 CrossRefPubMedGoogle Scholar
  33. 33.
    Singh NP, McCo MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  34. 34.
    Olive PL (1999) DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 75(4):395–405CrossRefGoogle Scholar
  35. 35.
    Collins AR (2004) The comet assay for DNA damage and repair. Mol Biotechnol 26(3):249–261CrossRefGoogle Scholar
  36. 36.
    Jover R, Ponsoda X, Castell JV, Gómez-Lechón MJ (1992) Evaluation of the cytotoxicity of ten chemicals on human cultured hepatocytes: predictability of human toxicity and comparison with rodent cell culture systems. Toxicol in Vitro 6:47–52.  https://doi.org/10.1016/0887-2333(92)90084-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Alcântara DDFA, Ribeiro HF, Matos LA, Sousa JMC, Burbano RR, Bahia MO (2013) Cellular responses induced in vitro by iron (Fe) in a central nervous system cell line (U343MGa). Genet Mol Res 12:1554–1560.  https://doi.org/10.4238/2013.May.13.9 CrossRefPubMedGoogle Scholar
  38. 38.
    Hacıhamdioglu DÖ, Kurekci AE, Gursel O, Atay AA, Balamtekin N, Aydın A, Haşimi A, Ozcan O (2013) Evaluation of lipid peroxidation and antioxidant system in healthy iron-replete infants receiving iron prophylaxis. Nutrition 29:138–142.  https://doi.org/10.1016/j.nut.2012.05.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Zaka-Ur-Rab Z, Adnan M, Ahmad SM, Islam N (2016) Effect of oral iron on markers of oxidative stress and antioxidant status in children with iron deficiency anaemia. J Clin Diagn Res 10:(10)SC13-SC13, SC19.Google Scholar
  40. 40.
    Kurtoglu E, Ugur A, Baltaci AK, Undar L (2003) Effect of iron supplementation on oxidative stress and antioxidant status in iron-deficiency anemia. Biol Trace Elem Res 96(1–3):117–123CrossRefGoogle Scholar
  41. 41.
    Altun D, Kurekci AE, Gursel O, Hacıhamdioglu DO, Kurt I, Aydın A, Ozcan O (2014) Malondialdehyde, antioxidant enzymes, and renal tubular functions in children with iron deficiency or iron-deficiency anemia. Biol Trace Elem Res 161(1):48–56CrossRefGoogle Scholar
  42. 42.
    National Academy of Sciences (2004) Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes (DRIs) tolerable upper intake levels, elements −1997-2001. (accessed May, 20 2018)Google Scholar
  43. 43.
    Premkumar K, Bowlus CL (2003) Ascorbic acid reduces the frequency of iron induced micronuclei in bone marrow cells of mice. Mutat Res-Genet Toxicol Environ Mutagen 542(1):99–103.  https://doi.org/10.1016/j.mrgentox.2003.09.002 CrossRefGoogle Scholar
  44. 44.
    Ferro E, Visalli G, La Rosa MA, Piraino B, Civa R, Randazzo Papa G, Di Pietro A (2016) Genotoxic effect of iron overload and disease complications in transfused β thalassaemic patients. Mutagenesis 32:275–281.  https://doi.org/10.1093/mutage/gew062. CrossRefGoogle Scholar
  45. 45.
    Mollet IG, Patel D, Govani FS, Giess A, Paschalaki K, Periyasamy M, Lidington EC, Mason JC, Jones MD, Game L, Ali S, Shovlin CL (2016) Low dose iron treatments induce a DNA damage response in human endothelial cells within minutes. PLoS One 11:e0147990.  https://doi.org/10.1371/journal.pone.0147990 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IGEVET – Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLPLa PlataArgentina
  2. 2.Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations