Advertisement

Effect of Long-term Administration of Oral Magnesium Sulfate and Insulin to Reduce Streptozotocin-Induced Hyperglycemia in Rats: the Role of Akt2 and IRS1 Gene Expressions

  • Mitra Kamran
  • Fatemeh Kharazmi
  • Kianoosh Malekzadeh
  • Ardeshir Talebi
  • Fatemah Khosravi
  • Nepton Soltani
Article

Abstract

The effects of long-term oral administration of magnesium sulfate and insulin on hyperglycemia were investigated using Akt2 and IRS1 gene expression methods in streptozotocin-induced diabetic rats. Fifty rats were randomly divided into five experimental groups: 1, non-diabetic control (NDC); 2, Mg2+-treated non-diabetic control (Mg-NDC); 3, chronic diabetic (CD); 4, Mg2+-treated chronic diabetic (Mg-CD); and 5, insulin-treated chronic diabetic (Ins-CD). Streptozotocin was used to induce diabetes. The Mg-CD and Mg-NDC groups received 10 g/l of MgSO4 added to drinking water. The Ins-CD group received 2.5 U/kg of insulin twice a day. Blood glucose level and body weight were measured every week. The intraperitoneal glucose tolerance test (IPGTT) was performed after 16 weeks. MgSO4 administration improved the blood glucose level and IPGTT. It also increased Akt2 and IRS1 genes as well as protein expression. Insulin lowered the blood glucose level and increased IRS1 gene and protein expression, but did not affect Akt2 gene and protein expression. Glucose reduction after Mg therapy may be mediated, at least partially, via IRS1 and Akt2 genes and protein stimulation. In insulin-treated rats, insulin resistance was not significant due to the absence of Akt2 gene expression.

Keywords

Diabetes Magnesium Insulin Akt2 IRS1 

Notes

Acknowledgments

This study was supported by the Hormozgan University of Medical Science under grant number 9471.

Compliance with Ethical Standards

The animals were managed in agreement with the criteria defined in the NIH publication no. 85-23, revised in 1985, and the experimental protocol was approved by the Ethics Committee HUMS REC.1394.112 for Animal Care of Hormozgan University of Medical Sciences.

References

  1. 1.
    Soltani N, Keshavarz M, Minaii B, Mirershadi F, Asl SZ, Dehpour AR (2005) Effects of administration of oral magnesium on plasma glucose and pathological changes in the aorta and pancreas of diabetic rats. Clin Exp Pharmacol Physiol 32(8):604–610CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Soltani N, Keshavarz M, Dehpour AR (2007) Effect of oral magnesium sulfate administration on blood pressure and lipid profile in streptozocin diabetic rat. Eur J Pharmacol 560(2–3):201–205CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gueux E, Rayssiguier Y (1983) The effect of magnesium deficiency on glucose stimulated insulin secretion in rats. Horm Metab Res 15(12):594–597CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sales CH, Pedrosa LFC (2006) Magnesium and diabetes mellitus: their relation. Clin Nutr 25(4):554–562CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458(1):40–47CrossRefPubMedCentralGoogle Scholar
  6. 6.
    De Valk H, Verkaaik R, Van Rijn H, Geerdink R, Struyvenberg A (1998) Oral magnesium supplementation in insulin-requiring Type 2 diabetic patients. Diabet Med 15(6):503–507CrossRefPubMedCentralGoogle Scholar
  7. 7.
    RODRiguez-MORan M, Guerrero-Romero F (2003) Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care 26(4):1147–1152CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Solaimani H, Soltani N, MaleKzadeh K, Sohrabipour S, Zhang N, Nasri S, Wang Q (2014) Modulation of GLUT4 expression by oral administration of Mg2+ to control sugar levels in STZ-induced diabetic rats. Can J Physiol Pharmacol 92(6):438–444CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Paolisso G, Scheen A, d’Onofrio F, Lefebvre P (1990) Magnesium and glucose homeostasis. Diabetologia 33(9):511–514CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Takaya J, Higashino H, Kobayashi Y (2004) Intracellular magnesium and insulin resistance. Magnes Res 17(2):126–136PubMedPubMedCentralGoogle Scholar
  11. 11.
    Rodríguez-Morán M, Guerrero-Romero F (2011) Insulin secretion is decreased in non-diabetic individuals with hypomagnesaemia. Diabetes Metab Res Rev 27(6):590–596CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Balkwill FR (2000) The cytokine network: frontiers in molecular biology. Oxford University Press, LondonGoogle Scholar
  13. 13.
    Kim Y-B, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB (1999) Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 104(6):733–741CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806CrossRefGoogle Scholar
  15. 15.
    Choi K, Kim Y-B (2010) Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med 25(2):119–129CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Saad M, Folli F, Kahn JA, Kahn CR (1993) Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92(4):2065–2072CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):444–451CrossRefGoogle Scholar
  18. 18.
    Olfert E, Cross B, McWilliam A (1993) Canadian Council on Animal Care—guide to the care and use of experimental animals, vol. 1. Brada Printing Services, Ottawa, ONGoogle Scholar
  19. 19.
    Sohrabipour S, Sharifi MR, Sharifi M, Talebi A, Soltani N (2018) Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 32(6):603–616Google Scholar
  20. 20.
    Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295(6):E1323–E1332CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cheng L, Song J, Li G, Liu Y, Wang Y, Meng X, Sun G, Sun X (2017) Effects of the Tangningtongluo formula as an alternative strategy for diabetics via upregulation of insulin receptor substrate-1. Mol Med Rep 16(1):703–709CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rude RK (1998) Magnesium deficiency: a cause of heterogenous disease in humans. J Bone Miner Res 13(4):749–758CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bertinato J, Xiao CW, Ratnayake WN, Fernandez L, Lavergne C, Wood C, Swist E (2015) Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food Nutr Res 59(1):25974CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Guerrero-Romero F, Rodríguez-Morán M (2011) Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial. Eur J Clin Investig 41(4):405–410CrossRefGoogle Scholar
  26. 26.
    Suarez A, Pulido N, Casla A, Casanova B, Arrieta F, Romero R, Rovira A (1993) Decreased insulin sensitivity in skeletal muscle of hypomagnesemic rats. Springer Verlag, NEW YORK, NY 10010, pp A123–A123Google Scholar
  27. 27.
    Chutia H, Lynrah KG (2015) Association of serum magnesium deficiency with insulin resistance in type 2 diabetes mellitus. J Lab Phys 7(2):75–78Google Scholar
  28. 28.
    Abel ED, Peroni O, Kim JK, Kim Y-B, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821):729–733CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gandhi GR, Jothi G, Antony PJ, Balakrishna K, Paulraj MG, Ignacimuthu S, Stalin A, Al-Dhabi NA (2014) Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol 745:201–216CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hajduch E, Litherland GJ, Hundal HS (2001) Protein kinase B (PKB/Akt)–a key regulator of glucose transport? FEBS Lett 492(3):199–203CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lee C-H, Shieh Y-S, Hsiao F-C, Kuo F-C, Lin C-Y, Hsieh C-H, Hung Y-J (2014) High glucose induces human endothelial dysfunction through an Axl-dependent mechanism. Cardiovasc Diabetol 13(1):53CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wang Y, Fofana B, Roy M, Ghose K, Yao X-H, Nixon M-S, Nair S, Nyomba GB (2015) Flaxseed lignan secoisolariciresinol diglucoside improves insulin sensitivity through upregulation of GLUT4 expression in diet-induced obese mice. J Funct Foods 18:1–9CrossRefGoogle Scholar
  33. 33.
    Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ. J Clin Invest 112(2):197–208CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292(5522):1728–1731CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wang J, Ma X-Y, Feng Y-F, Ma Z-S, Ma T-C, Zhang Y, Li X, Wang L, Lei W (2017) Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res 179(2):284–293CrossRefGoogle Scholar
  36. 36.
    Maria Z, Campolo AR, Lacombe VA (2015) Diabetes alters the expression and translocation of the insulin-sensitive glucose transporters 4 and 8 in the atria. PLoS One 10(12):e0146033CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE (2014) Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal 26(2):323–331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physiology Department, Faculty of MedicineHormozgan University of Medical ScienceBandar AbbasIran
  2. 2.Endocrinology and Metabolism Research CenterHormozgan University of Medical SciencesBandar AbbasIran
  3. 3.Molecular Medicine Research CenterHormozgan University of Medical ScienceBandar AbbasIran
  4. 4.Clinical Pathology Department, Faculty of MedicineIsfahan University of Medical ScienceIsfahanIran
  5. 5.Physiology Department, School of MedicineIsfahan University of Medical ScienceIsfahanIran

Personalised recommendations