Advertisement

Biological Trace Element Research

, Volume 189, Issue 2, pp 478–489 | Cite as

Long-Term Effects of Unmodified 50 nm ZnO in Mice

  • Tao KongEmail author
  • Shu-Hui Zhang
  • Cai Zhang
  • Ji-Liang Zhang
  • Fan Yang
  • Guo-yong Wang
  • Zi-Jun Yang
  • Dong-ying Bai
  • Meng-Yu Zhang
  • Jie Wang
  • Bai-hao Zhang
Article
  • 108 Downloads

Abstract

Nanometer zinc oxide (nano-ZnO) is widely used in many kinds of fields. However, information about the toxicity and toxic mechanism of nano-ZnO is limited. The aims of this study were to investigate the long-term toxic effects of unmodified 50 nm ZnO administered by gavage in mice. After 90 days, hematological parameters, hepatic and renal functions, and oxidative and anti-oxidative status were measured. Pathological damages in livers, kidneys, and other tissues were also examined by hematoxylin and eosin (H&E) staining. The results showed that oral nano-ZnO exposure induced anemia and damages to liver and kidney, influenced the antioxidant system, and impacted functions of liver and kidney in mice after a 90-day exposure. The main cause for oxidative stress in vivo induced by nano-ZnO might be hydroxyl free radical. The lowest observed adverse effect level (LOAEL) was 40 mg/kg·bw, and the livers, kidneys, lungs, pancreas, and gastrointestinal tracts are the target organs.

Keywords

Nanometer zinc oxide Sub-chronic toxicity LOAEL Target organs 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (Nos. 31402263 and 41301562) and China Scholarship Council (Grant No. 201608410282).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abbasalipourkabir R, Moradi H, Zarei S, Asadi S, Salehzadeh A, Ghafourikhosroshahi A et al (2015) Toxicity of zinc oxide nanoparticles on adult male Wistar rats. Food Chem Toxicol 84:154–160CrossRefGoogle Scholar
  2. 2.
    Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT (2014) Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol 11:15CrossRefGoogle Scholar
  3. 3.
    Ben-Slama I, Amara S, Mrad I, Rihane N, Omri K, Mir EL, Ghoul JEL et al (2015) Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. J Nanomed Nanotechnol 6(3):100284–100289Google Scholar
  4. 4.
    Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Hyeok SS et al (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9CrossRefGoogle Scholar
  5. 5.
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170CrossRefGoogle Scholar
  6. 6.
    Du XL, Shi Z, Peng ZC, Zhao CX, Zhang YM, Wang Z et al (2017) Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows. J Cell Physiol 232:3296–3308CrossRefGoogle Scholar
  7. 7.
    Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H (2013) Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol 35:67–71CrossRefGoogle Scholar
  8. 8.
    Esmailzadeh H, Sangpour P, Shahraz F, Hejazi J, Khaksar R (2016) Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Mater Sci Eng C 58:1058–1063CrossRefGoogle Scholar
  9. 9.
    Feng XL, Wu JR, Lai X, Zhang YL, Wei LM, Liu J et al (2017) Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine (Lond) 12(7):777–795CrossRefGoogle Scholar
  10. 10.
    Ghosh M, Sinha S, Jothiramajayam M, Jana A, Nag A, Mukherjee A (2016) Cytogenotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in vitro and Swiss albino male mice in vivo. Food Chem Toxicol 97:286–296CrossRefGoogle Scholar
  11. 11.
    Guo DD, Bi HS, Liu B, Wu QX, Wang DG, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol in Vitro 27:731–738CrossRefGoogle Scholar
  12. 12.
    Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, Mailänder V, Tremel W, Brieger J (2015) Genotoxic effects of zinc oxide nanoparticles. Nanoscale 7(19):8931–8938CrossRefGoogle Scholar
  13. 13.
    Hong TK, Tripathy N, Son HJ, Ha KT, Jeong HS, Hahn YB (2013) A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J Mater Chem B 1(23):2985–2992CrossRefGoogle Scholar
  14. 14.
    Hou W, Westerhoff P, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci Processes Impacts 15(1):103–122CrossRefGoogle Scholar
  15. 15.
    Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–142CrossRefGoogle Scholar
  16. 16.
    Jacobsen NR, Stoeger T, Van Den Brule S, Saber AT, Beyerle A, Vietti G et al (2015) Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol 85:84–95CrossRefGoogle Scholar
  17. 17.
    Jaeger CD, Bard AJ (1979) Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 83(24):3146–3152CrossRefGoogle Scholar
  18. 18.
    Kaya H, Aydin F, Gürkan M, Yilmaz S, Ates M, Demir V et al (2016) A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromisniloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582CrossRefGoogle Scholar
  19. 19.
    Kermanizadeh A, Jantzen K, Ward MB, Durhuus JA, Juel Rasmussen L, Loft S, Møller P (2017) Nanomaterial induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: the role of autophagy and apoptosis. Nanotoxicology 11(2):184–200CrossRefGoogle Scholar
  20. 20.
    Kim CS, Nguyen HD, Ignacio RM, Kim JH, Cho YC, Maeng EH et al (2014a) Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int J Nanomedicine 9(Suppl 2):195–205Google Scholar
  21. 21.
    Kim YR, Park J, Lee EJ, Park SH, Seong NW, Kim JH (2014b) Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomedicine 9(Suppl 2):109–126Google Scholar
  22. 22.
    Lee CM, Jeong HJ, Yun KN, Kim DW, Sohn MH, Lee JK, Jeong J, Lim ST (2012) Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int J Nanomedicine 7:3203–3209Google Scholar
  23. 23.
    Lewicka ZA, Yu WW, Oliva BL, Contreras EQ, Colvin VL (2013) Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J Photochem Photobiol A Chem 263(7):24–33CrossRefGoogle Scholar
  24. 24.
    Li MZ, Huang JT, Tsai YH, Mao SY, Fu CM, Lien TF (2016) Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim Sci J 87(11):1379–1385CrossRefGoogle Scholar
  25. 25.
    Mantecca P, Moschini E, Bonfanti P, Fascio U, Perelshtein I, Lipovsky A, Chirico G, Bacchetta R, del Giacco L, Colombo A, Gedanken A (2015) Toxicity evaluation of a new Zn-doped CuO nanocomposite with highly effective antibacterial properties. Toxicol Sci 146(1):16–30CrossRefGoogle Scholar
  26. 26.
    Mao SY, Lien TF (2017) Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Arch Anim Nutr 71(5):373–383CrossRefGoogle Scholar
  27. 27.
    Moghaddasia S, Fotovata A, Khoshgoftarmaneshb AH, Karimzadehc F, Khazaeid HR, Khorassania R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–551CrossRefGoogle Scholar
  28. 28.
    Muthuraman P, Ramkumar K, Kim DH (2014) Analysis of dose dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl Biochem Biotechnol 174(8):2851–2863CrossRefGoogle Scholar
  29. 29.
    Nazarizadeh A, Asri-Rezaie S (2016) Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. AAPS PharmSciTech 17(4):834–844CrossRefGoogle Scholar
  30. 30.
    Nriagu J (2011) Zinc toxicity in humans. Encycl Environ Health 801–807Google Scholar
  31. 31.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  32. 32.
    Oliviero M, Schiavo S, Rametta G, LuciaMiglietta M, Manzo S (2017) Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotuslividus. Sci Total Environ 607-608:176–183CrossRefGoogle Scholar
  33. 33.
    Park HS, Shin SS, Meang EH, Hong JS, Park J, Kim SH et al (2014) A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats. Int J Nanomedicine 9(Suppl 2):79–92Google Scholar
  34. 34.
    Patil NA, Gade WN, Deobagkar DD (2016) Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNAmethylation. Int J Nanomedicine 11:4509–4519CrossRefGoogle Scholar
  35. 35.
    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365CrossRefGoogle Scholar
  36. 36.
    Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J et al (1995) A review of the evidence supporting melatonin's role as an antioxidant. J Pineal Res 18(1):1–11CrossRefGoogle Scholar
  37. 37.
    Ryu HJ, Seo MY, Jung SK, Maeng EH, Lee SY, Jang DH et al (2014) Zinc oxide nanoparticles: a 90-day repeated-dose dermal toxicity study in rats. Int J Nanomedicine 9(Suppl 2):137–144Google Scholar
  38. 38.
    Seok SH, Cho WS, Park JS, Na Y, Jang A, Kim H, Cho Y, Kim T, You JR, Ko S, Kang BC, Lee JK, Jeong J, Che JH (2013) Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions. J Appl Toxicol 33(10):1089–1096CrossRefGoogle Scholar
  39. 39.
    Setyawati MI, Tay CY, Leong DT (2015) Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small 11(28):3458–3468CrossRefGoogle Scholar
  40. 40.
    Shalini D, Senthilkumar S, Rajaguru P (2017) Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicol Mech Methods 13:1–28Google Scholar
  41. 41.
    Sharma AK, Singh V, Gera R, Purohit MP, Ghosh D (2016) Zinc oxide nanoparticle induces microglial death by NADPH-oxidase-independent reactive oxygen species as well as energy depletion. Mol Neurobiol:1–14Google Scholar
  42. 42.
    Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res Genet Toxicol Environ Mutagen 745:84–91CrossRefGoogle Scholar
  43. 43.
    Song Y, Li N, Gu J, Fu S, Peng Z, Zhao C, Zhang Y, Li X, Wang Z, Li X, Liu G (2016) β-Hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway. J Dairy Sci 99(11):9184–9198CrossRefGoogle Scholar
  44. 44.
    Theodorou IG, Ruenraroengsak P, Gow A, Schwander S, Zhang JJ, Chung KF et al (2016) Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology 10(9):1351–1362CrossRefGoogle Scholar
  45. 45.
    Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomarkers 378790Google Scholar
  46. 46.
    Wang B, Feng WY, Wang M, Wang TC, Gu YQ, Zhu MT (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276CrossRefGoogle Scholar
  47. 47.
    Wang B, Zhang J, Chen CZ, Xu G, Qin X, Hong YL et al (2018) The size of zinc oxide nanoparticles controls its toxicity through impairing autophagic flux in A549 lung epithelial cells. Toxicol Lett 285:51–59CrossRefGoogle Scholar
  48. 48.
    Wang C, Cheng K, Zhou L, He JT, Zheng XC, Zhang LL et al (2017) Evaluation of long-term toxicity of oral zinc oxide nanoparticles and zinc sulfate in mice. Biol Trace Elem Res 178:276–282CrossRefGoogle Scholar
  49. 49.
    Wei LM, Wang JF, Chen AJ, Liu J, Feng XL, Shao LQ (2017) Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells. Int J Nanomedicine 12:1891–1903CrossRefGoogle Scholar
  50. 50.
    Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X, Zhao Y (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(4):577–588CrossRefGoogle Scholar
  51. 51.
    Yang QB, Lin TS, Burton C, Park SH, Ma YF (2016) Physicochemical insights of irradiation-enhanced hydroxyl radical generation from ZnO nanoparticles. Toxicol Res 5(2):482–491CrossRefGoogle Scholar
  52. 52.
    Yang QB, Ma YF (2014) Irradiation-enhanced cytotoxicity of zinc oxide nanoparticles. Int J Toxicol 33(3):187–203CrossRefGoogle Scholar
  53. 53.
    Ye DX, Ma YY, Zhao W, Cao HM, Kong JL, Xiong HM, Möhwald H (2016) ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano 10(4):4294–4300CrossRefGoogle Scholar
  54. 54.
    Yu KN, Yoon TJ, Minai-Tehrani A, Kim JE, Park SJ, Jeong MS et al (2013) Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol in Vitro 27:1187–1195CrossRefGoogle Scholar
  55. 55.
    Zhang J, Qin X, Wang B, Xu G, Qin ZX, Wang J, Wu LX, Ju XW et al (2017) Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis 8:e2954CrossRefGoogle Scholar
  56. 56.
    Zhao XS, Ren X, Zhu R, Luo ZY, Ren BX (2016) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol 180:56–70CrossRefGoogle Scholar
  57. 57.
    Zhao XS, Wang ST, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136-137:49–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Animal Science and Veterinary MedicineHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan ProvinceLuoyangPeople’s Republic of China
  3. 3.Library of Henan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations