Biological Trace Element Research

, Volume 189, Issue 2, pp 447–455 | Cite as

Biochemical and Morphological Alterations in Hearts of Copper-Deficient Bovines

  • Roberto Walter Israel OlivaresEmail author
  • Gabriela Cintia Postma
  • Andrea Schapira
  • Dario Ezequiel Iglesias
  • Laura Beatriz Valdez
  • Elizabeth Breininger
  • Pablo Daniel Gazzaneo
  • Leonardo Minatel


Copper deficiency is an important disease of cattle that produces several clinical signs and lesions, due to alterations in copper-dependent enzymes. One of the organs affected by this deficiency is the heart (falling disease), but nevertheless, these cardiac lesions have not been extensively studied in bovines. The aim of this work was to propose a possible pathogenic mechanism for cardiac lesions in cattle affected by copper deficiency. Because of the possible existence of oxidative distress caused by low levels of copper-zinc-superoxide dismutase and cytochrome oxidase, ultrastructural and histological lesions have been evaluated in the heart of bovines in which a Cu deficiency had been induced using high molybdenum and sulfur levels in the diet. Our results indicated that copper deficiency produces significant damage in myocardium with high levels of lipid oxidation and a significant reduction in copper-zinc-superoxide dismutase activity leading to an oxidative distress situation. However, cytochrome oxidase activity was not significantly reduced. Histological observation revealed a significant increase in the amount of connective tissue, enlarged basement membranes of myocytes, and numerous Anichkov cells, in the hearts of deficient animals. Ultrastructural observation showed a significant enhancement in the mitochondrial volume density, with presence of lesions such as swelling and cristae disruption. We conclude that copper deficiency in bovines causes morphological lesions in the heart due to an oxidative damage produced by copper-dependent enzyme alterations.


Copper Heart Oxidative distress Calves Ultrastructure 


Compliance with Ethical Standards

All protocols for this study were approved by the Institutional Experimental Animal Care and Use Committee of University of Buenos Aires, Faculty of Veterinary Science (CICUAL).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock, 3rd edn. CABI Publishing, UKGoogle Scholar
  2. 2.
    Suttle NF (1986) Problems in the diagnosis and anticipation of trace elements deficiencies in grazing livestock. Vet Rec 119:148–452Google Scholar
  3. 3.
    Bennetts HW, Beck AB, Harley R (1948) The pathogenesis of Falling disease. Aust Vet J 24(9):237–244Google Scholar
  4. 4.
    Bennetts HW, Harley R, Evans ST (1942) Studies on copper deficiency of cattle: the fatal termination (“Falling disease”). Aust Vet J 18(2):50–63Google Scholar
  5. 5.
    Mills CF, Dalgarno AC, Wenham G (1976) Biochemical and pathological changes in tissues of Fressian cattle during the experimental induction of copper deficiency. Br J Nutr 35(3):309–331Google Scholar
  6. 6.
    Suttle NF, Angus KW (1976) Experimental copper deficiency in the calf. J Comp Pathol 86(4):595–608Google Scholar
  7. 7.
    Fields M (1999) Role of trace elements in coronary heart disease. Br J Nutr 81(2):85–86Google Scholar
  8. 8.
    Klevay LM (2000) Cardiovascular disease from copper deficiency-a history. J Nutr 130(2):489S–492SGoogle Scholar
  9. 9.
    Davidson J, Medeiros DM, Hamlin RL, Jenkins JE (1993) Submaximal, aerobic exercise training exacerbates the cardiomyopathy of postweanling Cu-depleted rats. Biol Trace Elem Res 38(3):251–272Google Scholar
  10. 10.
    Werman MJ, David R (1996) Lysyl oxidase activity, collagen cross-links and connective tissue ultrastructure in the heart of copper-deficient male rats. J Nutr Biochem 7(8):437–444Google Scholar
  11. 11.
    Lear PM, Prohaska JR (1997) Atria and ventricles of copper-deficient rats exhibit similar hypertrophy and similar altered biochemical characteristics. Proc Soc Exp Biol Med 215(4):377–385Google Scholar
  12. 12.
    Johnson WT, Anderson CM (2008) Cardiac cytochrome c oxidase activity and contents of subunit 1 and 4 are altered in offspring by low prenatal copper intake. J Nutr 138(7):1269–1273Google Scholar
  13. 13.
    Johnson WT, Newman SM (2007) Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J Nutr Biochem 18(2):97–104Google Scholar
  14. 14.
    Medeiros DM, Liao Z, Hamlin RL (1991) Copper deficiency in a genetically hypertensive cardiomyopathic rat: electrocardiogram, functional and ultrastructural aspects. J Nutr 121(7):1026–1034Google Scholar
  15. 15.
    Davidson J, Medeiros DM, Hamlin RL (1992) Cardiac ultrastructural and electrophysiological abnormalities in postweanling copper-restricted and copper-repleted rats in the absence of hypertrophy. J Nutr 122:1566–1575Google Scholar
  16. 16.
    Wildman RE, Hopkins R, Failla ML, Medeiros DM (1995) Marginal copper-restricted diets produce altered cardiac ultrastructure in the rat. Exp Biol Med 210(1):43–49Google Scholar
  17. 17.
    National Research Council (2000) Nutrient requirements of beef cattle. National Academic of Science-National Research Council, USAGoogle Scholar
  18. 18.
    Postma GC, Minatel L, Olivares RWI, Schapira A, Dallorso ME, Carfagnini JC (2013) Bactericidal activity of lachrymal secretion and complement system in copper deficient bovines. Biol Trace Elem Res 153(1–3):178–183Google Scholar
  19. 19.
    Engle TE, Spears JW (2000) Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. J Anim Sci 78(9):2446–2451Google Scholar
  20. 20.
    Suvarna SK, Layton C, Bancroft JD (2013) Bancroft’s theory and practice of histological techniques, 7th edn. Elsevier, UKGoogle Scholar
  21. 21.
    Gibson-Corley KN, Olivier AK, Meyerholz DK (2013) Principles for valid histopathologic scoring in research. Vet Pathol 50(6):1007–1015Google Scholar
  22. 22.
    Crouser ED, Julian MW, Dorinsky PM (1999) Ileal VO2-DO2 alterations induced by endotoxin correlate with severity of mitochondrial injury. Am J Respir Crit Care Med 160(4):1347–1353Google Scholar
  23. 23.
    Boveris A, Lores Arnaiz S, Bustamante J, Alvarez S, Valdez LB, Boveris AD, Navarro A (2002) Pharmacological regulation of mitochondrial nitric oxide synthase. Methods Enzymol 359:328–339Google Scholar
  24. 24.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605Google Scholar
  25. 25.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  26. 26.
    Flohé L, Ötting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104Google Scholar
  27. 27.
    Zaobornyj T, Valdez LB, Iglesias DE, Gasco M, Gonzales G, Boveris A (2009) Mitochondrial nitric oxide metabolism during rat heart adaptation to high altitude: effect of sildenafil, L-NAME and L-arginine treatments. Am J Physiol Heart Circ Physiol 296:1741–1747Google Scholar
  28. 28.
    Scarlata E, O’Flaherty C, Carfagnini JC (1998) Lipoperoxidación y lesión muscular inducida por ejercicio intenso en ratas. Rev Med Vet 79(5):444–448Google Scholar
  29. 29.
    Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15(2):212–216Google Scholar
  30. 30.
    Aitken RJ, Harkiss D, Buckingham D (1993) Relationship beween iron-catalyzed lipid peroxidation potential and human sperm function. J Reprod Fertil 98(1):257–265Google Scholar
  31. 31.
    Ginn PE, Mansell JEKL, Rakich PM (2007) Copper deficiency. In: Maxie MG (ed) Jubb, Kennedy and Palmer’s pathology of domestic animals, vol. 2, 5th edn. Elsevier, St. Louis, p 603Google Scholar
  32. 32.
    McGavin MD, Zachary JF (2007) Pathologic basis of veterinary disease, 4th edn. Mosby Elsevier, St. LouisGoogle Scholar
  33. 33.
    Sylvén C, Lin L, Kallner A, Jansson E (1989) Regional distribution of citrate synthase and lactate dehydrogenase isoenzymes in the bovine heart. Acta Physiol Scand 136(3):331–338Google Scholar
  34. 34.
    Bol'shakova GB (1984) Origin of Anichkov’s cells in the myocardium. Bul Exp Biol Med 97(3):354–356Google Scholar
  35. 35.
    Psaltis PJ, Carbone A, Nelson A, Lau DH, Manavis J, Finnie J, Teo KS, Mackenzie L, Sanders P, Gronthos S, Zannettino ACW, Worthley SG (2008) An ovine model of toxic, nonischemic cardiomyopathy-assessment by cardiac magnetic resonance imaging. J Card Fail 14(9):785–795Google Scholar
  36. 36.
    Robinson WF, Robinson NA (2016) Myocardial necrosis. In: Maxie MG (ed) Jubb, Kennedy and Palmer’s pathology of domestic animals, vol. 3, 6th edn. Elsevier, St. Louis, p 37Google Scholar
  37. 37.
    Fell BF, Farmer LJ, Farquharson C, Bremner I, Graca DS (1985) Observations on the pancreas of cattle deficient in copper. J Comp Pathol 95(4):573–590Google Scholar
  38. 38.
    Fell BF, Farquharson C, Riddoch GI (1987) Kidney lesions in copper-deficient rats. J Comp Pathol 97(2):187–196Google Scholar
  39. 39.
    Farquharson C, Robins SP (1991) Immunolocalization of collagen types I, III and IV, elastin and fibronectin within the heart of normal and copper-deficient rats. J Comp Pathol 104(3):245–255Google Scholar
  40. 40.
    Li Y, Wang L, Schuschke DA, Zhou Z, Saari J, Kang YJ (2005) Marginal dietary copper restriction induces cardiomyopathy in rats. J Nutr 135(9):2130–2136Google Scholar
  41. 41.
    Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619Google Scholar
  42. 42.
    Wakabayashi T (2002) Megamitochondria formation-physiology and pathology. J Cell Mol Med 6(4):497–538Google Scholar
  43. 43.
    Tandler B, Fujioka H, Hoppel CL, Haldar SM, Jain MK (2015) Megamitochondria in cardiomyocytes of a knockout (Klf15−/−) mouse. Ultrastruct Pathol 39(5):336–339Google Scholar
  44. 44.
    Zeng H, Saari JT, Johnson WT (2007) Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. J Nutr 137(1):14–18Google Scholar
  45. 45.
    Tatarkova Z, Kuka S, Racay P et al (2011) Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol Res 60(2):281–289Google Scholar
  46. 46.
    Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80(1):30–39Google Scholar
  47. 47.
    Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680Google Scholar
  48. 48.
    Strassburger M, Bloch W, Sulyok S, Schüller J, Keist AF, Schmidt A, Wenk J, Peters T, Wlaschek M, Lenart J, Krieg T, Hafner M, Kümin A, Werner S, Müller W, Scharffetter-Kochanek K (2005) Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo. Free Radic Biol Med 38(11):1458–1470Google Scholar
  49. 49.
    Yang SJ, Keen CL, Lanoue L, Rucker RB, Uriu-Adams JY (2007) Low nitric oxide: a key factor underlying copper-deficiency teratogenicity. Free Radic Biol Med. 43(12):1639–1648Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Walter Israel Olivares
    • 1
    Email author
  • Gabriela Cintia Postma
    • 1
  • Andrea Schapira
    • 1
  • Dario Ezequiel Iglesias
    • 2
    • 3
  • Laura Beatriz Valdez
    • 2
    • 3
  • Elizabeth Breininger
    • 4
  • Pablo Daniel Gazzaneo
    • 1
  • Leonardo Minatel
    • 1
  1. 1.Cátedra de Patología, Facultad de Ciencias VeterinariasUniversidad de Buenos Aires (UBA)Buenos AiresArgentina
  2. 2.Facultad de Farmacia y Bioquímica, Cátedra de FisicoquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Instituto de Bioquímica y Medicina Molecular (IBIMOL)Buenos AiresArgentina
  4. 4.Facultad de Ciencias Veterinarias, Cátedra de Química BiológicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations