Advertisement

Biological Trace Element Research

, Volume 189, Issue 1, pp 277–290 | Cite as

Heavy Metal Levels and Mineral Nutrient Status of Natural Walnut (Juglans regia L.) Populations in Kyrgyzstan: Nutritional Values of Kernels

  • Ibrahim Ilker OzyigitEmail author
  • Mehmet Emin Uras
  • Ibrahim Ertugrul Yalcin
  • Zeki Severoglu
  • Goksel Demir
  • Bakyt Borkoev
  • Kalipa Salieva
  • Sevil Yucel
  • Umran Erturk
  • Ali Osman Solak
Article
  • 128 Downloads

Abstract

In this study, mineral nutrient and heavy metal (Al, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) contents of the walnut kernels and their co-located soil samples collected from the four different zones of natural walnut forests (Sary-Chelek, Arslanbap, and Kara-Alma in Jalal-Abad Region and Kara-Shoro in Osh Region) in Kyrgyzstan were investigated. The highest concentrations for all elements determined in the soil samples were observed in the Sary-Chelek zone whereas the Arslanbap zone was found to be having the lowest concentrations except Fe and Zn. The highest concentrations in the kernels of walnut samples were found to be in the Sary-Chelek zone for Ca, Fe, K, Mg, and Zn; in the Kara-Shoro zone for Cu; in the Arslanbap zone for Mn; and in the Kara-Alma zone for Na whereas the lowest concentrations were found to be in the Arslanbap zone for Ca, Fe, K, Mg, Na, and Zn and in the Sary-Chelek zone for Cu and Mn, respectively. Also, the levels of Al, Cd, Ni, and Pb in kernel samples could not be detected by ICP-OES because their levels were lower than the threshold detection point (10 μg.kg−1). Additionally, our data indicated that the walnut kernels from Kyrgyzstan have higher values for RDA (recommended daily allowances) in comparison with the walnut kernels from other countries.

Keywords

Nut RDA value Kernel Traditional medicine Phytochemicals Walnut forest 

Notes

Funding

This work was supported by Kyrgyz-Turkish Manas University, Grant number BAP-2013-FEB-02.

References

  1. 1.
    Mathew A, Peters U, Chatterjee N, Kulldorff M, Sinha R (2004) Fat, fiber, fruits, vegetables, and risk of colorectal adenomas. Int J Cancer 108:287–292Google Scholar
  2. 2.
    Hardman WE (2014) Walnuts have potential for cancer prevention and treatment in mice. J Nutr 144(4):555–560Google Scholar
  3. 3.
    Nakanishi M, Chen Y, Qendro V, Miyamoto S, Weinstock E, Weinstock GM, Rosenberg DW (2016) Effects of walnut consumption on colon carcinogenesis and microbial community structure. Cancer Prev Res 9(8):692–703Google Scholar
  4. 4.
    Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Karanja N (2006) Diet and lifestyle recommendations revision 2006. Circulation 114(1):82–96Google Scholar
  5. 5.
    Doyle C, Kushi LH, Byers T, Courneya KS, Demark-Wahnefried W, Grant B, Andrews KS (2006) Nutrition and physical activity during and after cancer treatment: an American Cancer Society guide for informed choices. CA-Cancer J Clin 56(6):323–353Google Scholar
  6. 6.
    Pereira JA, Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L (2008) Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem Toxicol 46(6):2103–2111Google Scholar
  7. 7.
    Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jerónimo C, Silva BM (2010) Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem Toxicol 48(1):441–447Google Scholar
  8. 8.
    Sze-Tao KWC, Sathe SK (2000) Walnut (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein vitro digestibility. J Sci Food Agric 80:1393–1401Google Scholar
  9. 9.
    Anjum S, Gani A, Ahmad M, Shah A, Masoodi FA, Shah Y, Gani A (2017) Antioxidant and antiproliferative activity of walnut extract (Juglans regia L.) processed by different methods and identification of compounds using GC/MS and LC/MS technique. J Food Process Pres 41(1)Google Scholar
  10. 10.
    Amaral JS, Casal S, Pereira JA, Seabra RM, Oliveira MBPP (2003) Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J Agr Food Chem 51(26):7698–7702Google Scholar
  11. 11.
    Colaric M, Veberic R, Solar A, Hudina M, Stampar F (2005) Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. J Agr Food Chem 53(16):6390–6396Google Scholar
  12. 12.
    Reiter RJ, Manchester LC, Dun-xian Tan MD (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21:920–924Google Scholar
  13. 13.
    Li L, Tsao R, Yang R, Liu CM, Zhu HH, Young JC (2006) Polyphenolic profiles and antioxidant activities of heartnut (Juglans ailanthifolia var. cordiformis) and Persian walnut (Juglans regia L.). J Agric Food Chem 54:8033–8040Google Scholar
  14. 14.
    Prasad RBN (2003) Walnuts and pecans. In Encyclopedia of food sciences and nutrition, 2nd ed.; Caballero, B, Trugo, LC, Finglas, PM, Eds.; Academic Press: London, U.K.; pp 6071-6079Google Scholar
  15. 15.
    Kohli A, Kothiyal P (2015) A review on Alzheimer disease-its treatment, future prospects and the role of Juglans regia in Alzheimer’s disease based on pathogenetic research. IJPRR 4(12):6–20Google Scholar
  16. 16.
    Marangoni F, Colombo C, Martiello A, Poli A, Paoletti R, Galli C (2007) Levels of the n-3 fatty acid eicosapentaenoic acid in addition to those of alpha linolenic acid are significantly raised in blood lipids by the intake of four walnuts a day in humans. NMCD 17(6):457–461Google Scholar
  17. 17.
    Tapsell LC, Batterham MJ, Teuss G, Tan SY, Dalton S, Quick CJ, Charlton KE (2009) Long-term effects of increased dietary polyunsaturated fat from walnuts on metabolic parameters in type II diabetes. Eur J Clin Nutr 63(8):1008–1015Google Scholar
  18. 18.
    Fitschen PJ, Rolfhus KR, Winfrey MR, Allen BK, Manzy M, Maher MA (2011) Cardiovascular effects of consumption of black versus English walnuts. J Med Food 14(9):890–898Google Scholar
  19. 19.
    Brennan AM, Sweeney LL, Liu X, Mantzoros CS (2010) Walnut consumption increases satiation but has no effect on insulin resistance or the metabolic profile over a 4-day period. Obesity 18(6):1176–1182Google Scholar
  20. 20.
    Robbins WA, Xun L, FitzGerald LZ, Esguerra S, Henning SM, Carpenter CL (2012) Walnuts improve semen quality in men consuming a Western-style diet: randomized control dietary intervention trial. Biol Reprod 87(4):101–101Google Scholar
  21. 21.
    Pribis P, Bailey RN, Russell AA, Kilsby MA, Hernandez M, Craig WJ, Sabatè J (2012) Effects of walnut consumption on cognitive performance in young adults. Brit J Nutr 107(9):1393–1401Google Scholar
  22. 22.
    Gîrzu M, Carnat A, Privat AM, Fiaplip J, Carnat AP, Lamaison JL (1998) Sedative effect of walnut leaf extract and juglone, an isolated constituent. Pharm Biol 36:280–286Google Scholar
  23. 23.
    Wichtl M, Anton R (1999) Plantes thérapeutiques. Tec.& Doc, Lavoisier, pp 291–293Google Scholar
  24. 24.
    Pereira JA, Oliveira I, Sousa A, Valentão P, Andrade PB, Ferreira IC, Estevinho L (2007) Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem Toxicol 45(11):2287–2295Google Scholar
  25. 25.
    Alkhawajah AM (1997) Studies on the antimicrobial activity of Juglans regia. Am J Chin Med 25:175–180Google Scholar
  26. 26.
    Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L, Pereira JA (2008) Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem Toxicol 46(7):2326–2331Google Scholar
  27. 27.
    Fernández-Agulló A, Pereira E, Freire MS, Valentao P, Andrade PB, González-Álvarez J, Pereira JA (2013) Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind Crop Prod 42:126–132Google Scholar
  28. 28.
    Wenzel J, Storer Samaniego C, Wang L, Burrows L, Tucker E, Dwarshuis N, Zand A (2017) Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier. Food Sci Nutr 5(2):223–232Google Scholar
  29. 29.
    Ding D, Zhao Y, Yang S, Shi W, Zhang Z, Lei Z, Yang Y (2013) Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47(7):2563–2571Google Scholar
  30. 30.
    Cao JS, Lin JX, Fang F, Zhang MT, Hu ZR (2014) A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresour Technol 163:199–205Google Scholar
  31. 31.
    Altun T, Kar Y (2016) Removal of Cr (VI) from aqueous solution by pyrolytic charcoals. New Carbon Mater 31(5):501–509Google Scholar
  32. 32.
    Vatansever R, Ozyigit II, Filiz E (2017) Essential and beneficial trace elements in plants, and their transport in roots: a review. Appl Biochem Biotech 181(1):464–482Google Scholar
  33. 33.
    Freeland-Graves JH, Trotter PJ (2003) Minerals-dietary importance. Encyclopedia of Food Sciences and Nutrition,2nd ed.; Caballero B, Trugo LC, Finglas PM, Eds.; Academic Press: London, U.K.; pp 4005-4012Google Scholar
  34. 34.
    Osma E, Ozyigit II, Leblebici Z, Demir G, Serin M (2012) Determination of heavy metal concentrations in tomato (Lycopersicon esculentum Miller) grown in different station types. Rom Biotechnol Lett 17:6962–6974Google Scholar
  35. 35.
    Ozyigit II, Dogan I, Eskin B, Keskin M, Demir G, Yalcin IE (2013) Mineral element uptake status of endemic Isoetes anatolica Prada & Rolleri populations from Bolu-Turkey. Pak J Bot 45(S1):515–519Google Scholar
  36. 36.
    Yasar U, Ozyigit II, Demir G, Yilmaz YZ (2012) Determination of hair iron levels of healthy female high school students with AAS in the Pendik District, Istanbul-Turkey. Fresenius Environ Bull 21:2644–2264Google Scholar
  37. 37.
    Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289Google Scholar
  38. 38.
    Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999Google Scholar
  39. 39.
    Batool R, Hameed M, Ashraf M, Ahmad MSA, Fatima S (2015) Physio-anatomical responses of plants to heavy metals. In Phytoremediation for green energy (pp. 79-96). Springer NetherlandsGoogle Scholar
  40. 40.
    Severoglu Z, Ozyigit II, Dogan I, Kurmanbekova G, Demir G, Yalcin IE, Kari GK (2015) The usability of Juniperus virginiana L. as a biomonitor of heavy metal pollution in Bishkek City, Kyrgyzstan. Biotechnol Biotec Eq 29(6):1104–1112Google Scholar
  41. 41.
    FAOSTAT (2014) http://www.fao.org/. Accessed 04.20.2018
  42. 42.
    Mamadjanov D (2006) Study of varieties and diversity of walnut forms in Kyrgyzstan. Schweiz Z Forstwes 157(11):499–506Google Scholar
  43. 43.
    Winter MB, Wolff B, Gottschling H, Cherubini P (2009) The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in southern Kyrgyzstan. Eur J Forest Res 128(6):531Google Scholar
  44. 44.
    Schmidt M (2005) Utilization and management changes in South Kyrgyzstan’s mountain forests. J Mt Sci 2(2):91–104Google Scholar
  45. 45.
    Rehnus M, Mamadzhanov D, Venglovsky BI, Sorg JP (2013) The importance of agroforestry hay and walnut production in the walnut-fruit forests of southern Kyrgyzstan. Agrofor Syst 87(1):1–12Google Scholar
  46. 46.
    Orozumbekov A, Cantarello E, Newton AC (2015) Status, distribution and use of threatened tree species in the walnut-fruit forests of Kyrgyzstan. For Trees Livelihoods 24(1):1–17.  https://doi.org/10.1080/14728028.2014.928604 Google Scholar
  47. 47.
    Sakbaeva Z, Schroetter S, Karabaev N, Avazov A, Rogasik J, Schnug E (2013) Soils of nut-fruit forests in southern Kyrgyzstan–important ecosystems worthy of protection. Applied Agricultural and Forestry Research 93Google Scholar
  48. 48.
    Ozyigit II, Yalcin B, Turan S, Saracoglu IA, Karadeniz S, Yalcin IE, Demir G (2017) Investigation of heavy metal level and mineral nutrient status in widely used medicinal plants’ leaves in Turkey: insights into health implications. Biol Trace Elem Res 182(2):387–406Google Scholar
  49. 49.
    Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, pp 331–338Google Scholar
  50. 50.
    Alekseenko V, Alekseenko A (2014) The abundances of chemical elements in urban soils. J Geochem Explor 147:245–249Google Scholar
  51. 51.
    Kacar B, Katkat AV (2007) Plant nutrition. Nobel publication (849), 29Google Scholar
  52. 52.
    Kabata-Pendias, A (2001) Trace metals in soils-a current issue in Poland. Acta Universitatis Wratislaviensis. Prace Botaniczne 79, 13–20Google Scholar
  53. 53.
    Unver I, Anac D (2013) Toprak Bilgisi ve Bitki Besleme, Second Edition, Anadolu University Press, Eskişehir, Türkiye. 201-211Google Scholar
  54. 54.
    Barker AV, Pilbeam DJ (2007) Handbook of plant nutrition (Vol. 117). CRC press. pp. 415-416Google Scholar
  55. 55.
    Landon JR (2014) Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Routledge 1–530Google Scholar
  56. 56.
    Zhao X, Su Y, Li S, Bi Y, Han X (2018) A green method to synthesize flowerlike Fe (OH) 3 microspheres for enhanced adsorption performance toward organic and heavy metal pollutants. J Environ Sci 1–11,  https://doi.org/10.1016/j.jes.2018.01.010
  57. 57.
    Tapia MI, Sánchez-Morgado JR, García-Parra J, Ramírez R, Hernández T, González-Gómez D (2013) Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J Food Compost Anal 31(2):232–237Google Scholar
  58. 58.
    Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Kovacs CS (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol 96(1):53–58Google Scholar
  59. 59.
    National Institutes of Health (NIH) (2017) Dietary supplement fact sheet Available from https://ods.od.nih.gov/factsheets/list-all/. Cited 2017 April 06
  60. 60.
    Institute of Medicine, Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc, vol 2001. National Academy Press, Washington, D.C., pp 442–501Google Scholar
  61. 61.
    Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, Lee IM, Lichtenstein AH, Loria CM, Millen BE, Nonas CA, Sacks FM, Smith SC Jr, Svetkey LP, Wadden TA, Yanovski SZ (2014) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(suppl 2):S76–S99Google Scholar
  62. 62.
    Beto JA (2015) The role of calcium in human aging. Clin Nutr Res 4(1):1–8PubMedCentralGoogle Scholar
  63. 63.
    Lavedrine F, Ravela A, Villet A, Ducros V, Alary J (2000) Mineral composition of two walnut cultivars originating in France and California. Food Chem 68:347–351Google Scholar
  64. 64.
    Caglarirmak N (2003) Biochemical and physical properties of some walnut genotypes (Juglans regia L.). Mol Nutr Food Res 47(1):28–32Google Scholar
  65. 65.
    Ozcan MM (2006) Determination of the mineral compositions of some selected oil-bearing seeds and kernels using inductively coupled plasma atomic emission spectrometry (ICP-AES). Grasas Aceites 57:211–218Google Scholar
  66. 66.
    Ozcan MM (2009) Some nutritional characteristics of fruit and oil of walnut (Juglans regia L.) growing in Turkey. Iran J Chem Chem Eng 28(1):57–62Google Scholar
  67. 67.
    Cosmulescu S, Baciu A, Achim G, Botu M, Trandafir I (2009) Mineral composition of fruits in different walnut (Juglans regia L.) cultivars. Not Bot Horti Agrobot Cluj Napoca 37:156–160Google Scholar
  68. 68.
    Suliburska J, Krejpcio Z (2014) Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J Food Sci Technol 51(3):589–594Google Scholar
  69. 69.
    Gharibzahedi SMT, Mousavi SM, Hamedi M, Khodaiyan F (2012) Comparative analysis of new Persian walnut cultivars: nut/kernel geometrical, gravimetrical, frictional and mechanical attributes and kernel chemical composition. Sci Hortic 135:202–209Google Scholar
  70. 70.
    Xu X, Pin S, Shedlock J, Harris ZL (2005) Copper. Encyclopedia of human nutrition. Caballero, B., Allen L. H., & Prentice A. (Eds.). Elsevier Ldt. Oxford, UK. pp. I-471-476Google Scholar
  71. 71.
    Vashchenko G, MacGillivray RT (2013) Multi-copper oxidases and human iron metabolism. Nutrients 5(7):2289–2313PubMedCentralGoogle Scholar
  72. 72.
    Cabrera C, Lloris F, Giménez R, Olalla M, Lopez MC (2003) Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Sci Total Environ 308:1–14Google Scholar
  73. 73.
    Trandafir I, Cosmulescu S, Botu M, Nour V (2016) Antioxidant activity, and phenolic and mineral contents of the walnut kernel (Juglans regia L.) as a function of the pellicle color. Fruits 71(3):177–184Google Scholar
  74. 74.
    World Health Organization (WHO) (2009) Global health risks - mortality and burden of disease attributable to selected major risks, ISBN 978 92 4 156387 1Google Scholar
  75. 75.
    Lönnerdal B, Hernell O (2013) Iron: physiology, dietary sources, and requirements. edt. Caballero, B. Encyclopedia of human nutrition. Academic press. Amsterdam, The Netherlands Vol3. 39-46Google Scholar
  76. 76.
    Winter WE, Bazydlo LA, Harris NS (2014) The molecular biology of human iron metabolism. Lab Med 45(2):92–102Google Scholar
  77. 77.
    Appel JL (2005) Potassium. In: Caballero B, Allen LH, Prentice A (eds) Encyclopedia of human nutrition. Elsevier Ldt, Oxford, UK., pp III-509–III-512Google Scholar
  78. 78.
    Weaver CM (2013) Potassium and health. Adv Nutr 4(3):368S–377SPubMedCentralGoogle Scholar
  79. 79.
    Volpe SL (2013) Magnesium in disease prevention and overall health. Adv Nutr 4(3):378S–383SPubMedCentralGoogle Scholar
  80. 80.
    Santos D, Batoreu C, Mateus L, Dos Santos AM, Aschner M (2014) Manganese in human parenteral nutrition: considerations for toxicity and biomonitoring. Neurotoxicology 43:36–45Google Scholar
  81. 81.
    Michell AR (2005) Sodium. In: Caballero B, Allen LH, Prentice A (eds) Encyclopedia of human nutrition. Elsevier Ldt, Oxford, UK., pp IV-150–IV-168Google Scholar
  82. 82.
    Gullapalli HS, Tekade AP, Gullapalli N, Gullapalli HS, Kottucherry K (2013) Effects of the walnut inclusion in the diet of in the young male patients of essential hypertension on lipid profile, blood pressure. J Evol Med Dent Sci 2(9):1365–1370Google Scholar
  83. 83.
    Joukar S, Ebrahimi S, Khazaei M, Bashiri A, Shakibi MR, Naderi V, Alasvand M (2017) Co-administration of walnut (Juglans regia) prevents systemic hypertension induced by long-term use of dexamethasone: a promising strategy for steroid consumers. Pharm Biol 55(1):184–189Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ibrahim Ilker Ozyigit
    • 1
    • 2
    Email author
  • Mehmet Emin Uras
    • 1
  • Ibrahim Ertugrul Yalcin
    • 3
  • Zeki Severoglu
    • 1
  • Goksel Demir
    • 4
  • Bakyt Borkoev
    • 5
  • Kalipa Salieva
    • 5
  • Sevil Yucel
    • 6
  • Umran Erturk
    • 7
  • Ali Osman Solak
    • 5
  1. 1.Department of Biology, Faculty of Science and ArtsMarmara UniversityIstanbulTurkey
  2. 2.Department of Biology, Faculty of ScienceKyrgyz-Turkish Manas UniversityBishkekKyrgyzstan
  3. 3.Department of Molecular Biology and Genetics, Faculty of Engineering and Natural SciencesBahcesehir UniversityIstanbulTurkey
  4. 4.Department of Urban and Regional Planning, Faculty of ArchitectureKirklareli UniversityKirklareliTurkey
  5. 5.Department of Chemical Engineering, Faculty of EngineeringKyrgyz-Turkish Manas UniversityBishkekKyrgyzstan
  6. 6.Department of Bioengineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
  7. 7.Department of Horticulture, Faculty of AgricultureUludag UniversityBursaTurkey

Personalised recommendations