Advertisement

Biological Trace Element Research

, Volume 189, Issue 1, pp 157–171 | Cite as

Sodium Fluoride (NaF) Induces Inflammatory Responses Via Activating MAPKs/NF-κB Signaling Pathway and Reducing Anti-inflammatory Cytokine Expression in the Mouse Liver

  • Linlin Chen
  • Ping Kuang
  • Huan Liu
  • Qin Wei
  • Hengmin CuiEmail author
  • Jing Fang
  • Zhicai Zuo
  • Junliang Deng
  • Yinglun Li
  • Xun Wang
  • Ling Zhao
Article
  • 158 Downloads

Abstract

At present, no reports are focused on fluoride-induced hepatic inflammatory responses in human beings and animals. This study aimed to investigate the mRNA and protein levels of inflammatory cytokines and signaling molecules for evaluating the effect of different doses (0, 12, 24, and 48 mg/kg) of sodium fluoride (NaF) on inflammatory reaction in the mouse liver by using methods of experimental pathology, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. We found that NaF in excess of 12 mg/kg caused the hepatic inflammatory responses, and the results showed that NaF activated the mitogen-activated protein kinases (MAPKs) signaling pathway by markedly increasing (p < 0.01 or p < 0.05) mRNA and protein levels of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinases 1/2 (MEK1/2), extracellular signal-regulated protein kinases 1/2 (Erk1/2), mitogen-activated protein kinase kinases 4/7 (MEK4/7), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and mitogen-activated protein kinase kinases 3/6 (MEK3/6), and the nuclear factor-kappa B (NF-κB) signaling pathway by increasing (p < 0.01 or p < 0.05) the production of NF-κB and inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β) and reducing (p < 0.01 or p < 0.05) the production of the inhibitory kappa B (IκB). Thus, NaF that caused the hepatic inflammatory responses was characterized by increasing (p < 0.01 or p < 0.05) the production of pro-inflammatory mediators such as interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and cyclooxygenase-2 (COX-2) via the activation of MAPKs and NF-κB pathways, and by significantly inhibiting (p < 0.01 or p < 0.05) the production of anti-inflammatory mediators including interleukin-4 (IL-4) and transforming growth factor beta (TGF-β).

Keywords

Sodium fluoride Liver Inflammatory responses NF-κB MAPK 

Abbreviations

NaF

Sodium fluoride

qRT-PCR

Quantitative real-time polymerase chain reaction

MAPKs

Mitogen-activated protein kinases

ASK1

Apoptosis signal-regulating kinase 1

MEK1/2

Mitogen-activated protein kinase kinases 1/2

Erk1/2

Extracellular signal-regulated protein kinases 1/2

MEK4/7

Mitogen-activated protein kinase kinases 4/7

JNK

c-Jun N-terminal kinase

MEK3/6

Mitogen-activated protein kinase kinases 3/6

p38

p38 mitogen-activated protein kinase

NF-κB

Nuclear factor-kappa B

IKK-β

Nuclear factor kappa-B kinase subunit beta

IκB

Inhibitory kappa B

IL-1β

Interleukin-1β

IL-6

Interleukin-6

IL-8

Interleukin-8

MCP-1

Monocyte chemotactic protein 1

COX-2

Cyclooxygenase-2

IL-4

Interleukin-4

TGF-β

Transforming growth factor beta

Notes

Acknowledgments

The study was supported by the program for Changjiang scholars and innovative research team in university (IRT 0848) and the Shuangzhi Project of Sichuan Agricultural University (03572437; 03573050).

Author Contributions

L. Chen, P. Kuang, and H. Cui designed the experiments. L. Chen, P. Kuang, H. Liu, and Q. Wei carried out the experiments. L. Chen, P. Kuang, H. Liu, Q. Wei, J. Fang, Z. Zuo, J. Deng., Y. Li, X. Wang, and L. Zhao analyzed and interpreted data. L. Chen, P. Kuang, H. Liu, and H. Cui wrote and revised the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bouaziz H, Ketata S, Jammoussi K, Boudawara T, Ayedi F, Ellouze F, Zeghal N (2006) Effects of sodium fluoride on hepatic toxicity in adult mice and their suckling pups. Pestic Bioche Phy 86(3):124–130Google Scholar
  2. 2.
    Agalakova NI, Gusev GP (2012) Molecular mechanisms of cytotoxicity and apoptosis induced by inorganic fluoride. ISRN Cell Biol 2012:1–16.  https://doi.org/10.5402/2012/403835 Google Scholar
  3. 3.
    Fordyce FM, Vrana K, Zhovinsky E, Povoroznuk V, Toth G, Hope BC, Iljinsky U, Baker J (2007) A health risk assessment for fluoride in Central Europe. Environ Geochem Hlth 29(2):83–102Google Scholar
  4. 4.
    Barbier O, Arreolamendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319–333Google Scholar
  5. 5.
    Mohammadi AA, Yousefi M, Yaseri M, Jalilzadeh M, Mahvi AH (2017) Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci Rep 7(1):1–7Google Scholar
  6. 6.
    Wang Y-N, Xiao K-Q, Liu J-L, Dallner G, Guan Z-Z (2000) Effect of long term fluoride exposure on lipid composition in rat liver. Toxicology 146(2):161–169Google Scholar
  7. 7.
    Perumal E, Paul V, Govindarajan V, Panneerselvam L (2013) A brief review on experimental fluorosis. Toxicol Lett 223(2):236–251Google Scholar
  8. 8.
    Deng H, Kuang P, Cui H, Chen L, Luo Q, Fang J, Zuo Z, Deng J, Wang X, Zhao L (2016) Sodium fluoride (NaF) induces the splenic apoptosis via endoplasmic reticulum (ER) stress pathway in vivo and in vitro. Aging 8(12):3552–3567Google Scholar
  9. 9.
    Shi Z, Zhan Y, Zhao J, Wang J, Ma H (2016) Effects of fluoride on the expression of p38MAPK signaling pathway-related genes and proteins in spleen lymphocytes of mice. Biol Trace Elem Res 173(2):1–6Google Scholar
  10. 10.
    Yousefi M, Yaseri M, Nabizadeh R, Hooshmand E, Jalilzadeh M, Mahvi AH, Mohammadi AA (2018) Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran Biol Trace Elem Res 2018. DOI:  https://doi.org/10.1007/s12011-018-1269-2
  11. 11.
    Moghaddam VK, Yousefi M, Khosravi A, Yaseri M, Mahvi AH, Hadei M, Mohammadi AA, Robati Z, Mokammel A (2018) High concentration of fluoride can be increased risk of abortion. Biol Trace Elem Res 2018. DOI:  https://doi.org/10.1007/s12011-018-1250-0
  12. 12.
    Yousefi M, Mohammadi AA, Yaseri M, Mahvi AH (2017) Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: an ecological study in West Azerbaijan Province, Poldasht County. Iran Fluoride 50(2017):343–353Google Scholar
  13. 13.
    Thrane EV, Refsnes M, Thoresen GH, Låg M, Schwarze PE (2001) Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK. Toxicol Sci 61(1):83–91Google Scholar
  14. 14.
    Lund K, Refsnes M, Ramis I, Dunster C, Boe J, Schwarze PE, Skovlund E, Kelly FJ, Kongerud J (2002) Human exposure to hydrogen fluoride induces acute neutrophilic, eicosanoid, and antioxidant changes in nasal lavage fluid. Inhal Toxicol 14(2):119–132Google Scholar
  15. 15.
    Aydin G, Ciçek E, Akdoğan M, Gökalp O (2003) Histopathological and biochemical changes in lung tissues of rats following administration of fluoride over several generations. J Appl Toxicol 23(6):437–446Google Scholar
  16. 16.
    Mendoza-Schulz A, Solano-Agama C, Arreola-Mendoza L, Reyes-Márquez B, Barbier O, Razo LMD, Mendoza-Garrido ME (2009) The effects of fluoride on cell migration, cell proliferation, and cell metabolism in GH4C1 pituitary tumour cells. Toxicol Lett 190(2):179–186Google Scholar
  17. 17.
    Zhang M, Wang A, Xia T, He P (2008) Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol Lett 179(1):1–5Google Scholar
  18. 18.
    Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140(6):771–776Google Scholar
  19. 19.
    Lee S, Shin S, Kim H, Han S, Kim K, Kwon J, Kwak JH, Lee CK, Ha NJ, Yim D (2011) Anti-inflammatory function of arctiin by inhibiting COX-2 expression via NF-κB pathways. J Inflamm 8(1):1–9Google Scholar
  20. 20.
    Sun P, Zhou K, Wang S, Li P, Chen S, Lin G, Zhao Y, Wang T (2013) Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One 8(8):e69424Google Scholar
  21. 21.
    Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218Google Scholar
  22. 22.
    Jayandharan GR, Aslanidi G, Martino AT, Jahn SC, Perrin GQ, Herzog RW, Srivastava A (2011) Activation of the NF-kappaB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. P Natl Acad Sci USA 108(9):3743–3748Google Scholar
  23. 23.
    Wang Z, Jiang W, Zhang Z, Qian M, Du B (2012) Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappaB pathway in RAW 264.7 cells. J Ethnopharmacol 144(1):145–150Google Scholar
  24. 24.
    Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, Fang J, Zuo Z, Deng J, Li Y (2017) Sodium fluoride induces renal inflammatory responses by activating NF-κB signaling pathway and reducing anti-inflammatory cytokine expression in mice. Oncotarget 8(46):80192–80207Google Scholar
  25. 25.
    Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L (2013) Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharm 271(2):206–215Google Scholar
  26. 26.
    Ma Y, Niu R, Sun Z, Wang J, Luo G, Zhang J, Wang J (2012) Inflammatory responses induced by fluoride and arsenic at toxic concentration in rabbit aorta. Arch Toxicol 86(6):849–856Google Scholar
  27. 27.
    Gutowska I, Baranowska-Bosiacka I, Goschorska M, Kolasa A, Łukomska A, Jakubczyk K, Dec K, Chlubek D (2015) Fluoride as a factor initiating and potentiating inflammation in THP1 differentiated monocytes/macrophages. Toxicol in Vitro 29(7):1661–1668Google Scholar
  28. 28.
    Ridley W, Matsuoka M (2009) Fluoride-induced cyclooxygenase-2 expression and prostaglandin E 2 production in A549 human pulmonary epithelial cells. Toxicol Lett 188(3):180–185Google Scholar
  29. 29.
    Tian Y, Huo M, Li G, Li Y, Wang J (2016) Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride. Chemosphere 161:89–95Google Scholar
  30. 30.
    Refsnes M, Skuland T, Låg M, Schwarze PE, Øvrevik J (2014) Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells. J Inflamm Res 7:169–185Google Scholar
  31. 31.
    Wang HW, Zhou BH, Cao JW, Zhao J, Zhao WP, Tan PP (2017) Pro-inflammatory cytokines are involved in fluoride-induced cytotoxic potential in HeLa cells. Biol Trace Elem Res 175(1):98–102Google Scholar
  32. 32.
    Bera I, Sabatini R, Auteri P, Flace P, Sisto G, Montagnani M, Potenza MA, Marasciulo FL, Carratu MR, Coluccia A (2007) Neurofunctional effects of developmental sodium fluoride exposure in rats. Eur Rev for Med Pharmaco 11(4):211–224Google Scholar
  33. 33.
    Pandiyan T (2013) An in vivo and in vitro studies on the antioxidant property of epigallocatechin gallate on sodium fluoride induced toxicity in rats. Int J Phytopharmacol 4(4):245–254Google Scholar
  34. 34.
    Almela P, García-Nogales P, Romero A, Milanés MV, Laorden ML, Puig MM (2009) Effects of chronic inflammation and morphine tolerance on the expression of phospho-ERK 1/2 and phospho-P38 in the injured tissue. N-S Arch Pharmacol 379(3):315–323Google Scholar
  35. 35.
    Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, Glassman M, Lee JD, Yan C, Berk BC (2002) Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res 90(11):1222–1230Google Scholar
  36. 36.
    Su X, Pan J, Bai F, Yuan H, Dong N, Li D, Wang X (2016) Chen Z (2016) IL-27 attenuates airway inflammation in a mouse asthma model via the STAT1 and GADD45γ/p38 MAPK pathways. J Transl Med 14:283.  https://doi.org/10.1186/s12967-016-1039-x Google Scholar
  37. 37.
    Ramadori G, Moriconi F, Malik I, Dudas J (2008) Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol 59(supplement 1):107–117Google Scholar
  38. 38.
    Lv YY, Jin Y, Han GZ, Liu YX, Wu T, Liu P, Zhou Q, Liu KX, Sun HJ (2012) Ursolic acid suppresses IL-6 induced C-reactive protein expression in HepG2 and protects HUVECs from injury induced by CRP. Eur J Pharm Sci 45(1–2):190–194Google Scholar
  39. 39.
    Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, Fang J, Zuo Z, Deng J, Li Y (2017) Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging 9(6):1623–1639Google Scholar
  40. 40.
    Di A, Gao XP, Qian F, Kawamura T, Han J, Hecquet C, Ye RD, Vogel SM, Malik AB (2011) The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 13(1):29–34Google Scholar
  41. 41.
    Ma JQ, Ding J, Zhang L, Liu CM (2014) Ursolic acid protects mouse liver against CCl4-induced oxidative stress and inflammation by the MAPK/NF-κB pathway. Environ Toxicol Pharmacol 37(3):975–983Google Scholar
  42. 42.
    Gang XU, Wang J, Shuhui MA, Zhan Y, Haili MA (2014) Effects of fluoride on the expression of ERK signaling pathway associated gene and proteins in the splenic lymphocytes of mouse. Acta Veterinaria Et Zootechnica Sinica 45(11):1888–1894Google Scholar
  43. 43.
    Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118(Pt 16):3569–3572Google Scholar
  44. 44.
    Wang ZQ, Wu DC, Huang FP, Yang GY (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996(1):55–66Google Scholar
  45. 45.
    Yang CS, Shin DM, Lee HM, Son JW, Lee SJ, Akira S, Gougerotpocidalo MA, Elbenna J, Ichijo H, Jo EK (2008) ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol 10(3):741–754Google Scholar
  46. 46.
    Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549Google Scholar
  47. 47.
    Praveen F, Rashid J, Jamal I (2008) Role of the JNK signal transduction pathway in inflammatory bowel disease. World J Gastroenterol 14(2):200–202Google Scholar
  48. 48.
    Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12(1):14–21Google Scholar
  49. 49.
    Han MS, Barrett T, Brehm M, Davis R (2016) Inflammation mediated by JNK in myeloid cells promotes the development of hepatitis and hepatocellular carcinoma. Cell Rep 15(1):19–26Google Scholar
  50. 50.
    Schieven GL (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5(10):921–928Google Scholar
  51. 51.
    Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16(3):1247–1255Google Scholar
  52. 52.
    Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2010) NF-κB in renal inflammation. J Am Soc Nephrol 21(8):1254–1262Google Scholar
  53. 53.
    Kadhim H, Tabarki B, Verellen G, De PC, Rona AM, Sébire G (2001) Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56(10):1278–1280Google Scholar
  54. 54.
    Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109(2):S81–S96Google Scholar
  55. 55.
    Nakayama H, Ikebe T, Beppu M, Shirasuna K (2001) High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer 92(12):3037–3044Google Scholar
  56. 56.
    He G, Karin M (2011) NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res 21(1):159–168Google Scholar
  57. 57.
    Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8(11):837–848Google Scholar
  58. 58.
    Xiao YQ, Malcolm K, Worthen GS, Gardai S, Schiemann WP, Fadok VA, Bratton DL, Henson PM (2002) Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-β. J Biol Chem 277(17):14884–14893Google Scholar
  59. 59.
    Zhou H, Huang QL, Li ZY, Wu YM, Xie XB, Ma KK, Cao WJ, Zhou Z, Lu CX, Zhong GM (2013) pORF5 plasmid protein of chlamydia trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells. Sci China Life Sci 56(5):460–466Google Scholar
  60. 60.
    Gadaleta RM, Oldenburg B, Willemsen ECL, Spit M, Murzilli S, Salvatore L, Klomp LWJ, Siersema PD, Erpecum KJV, Mil SWCV (2011) Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine. Biochim Biophys Acta 1812(8):851–878Google Scholar
  61. 61.
    Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11Google Scholar
  62. 62.
    Shin DS, Kim KW, Chung HY, Yoon S, Moon JO (2013) Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats. Arch Pharm Res 36(5):626–633Google Scholar
  63. 63.
    Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582Google Scholar
  64. 64.
    Morino F, Robecchi M (2008) Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol Rev 223(1):7–19Google Scholar
  65. 65.
    Cieślak M, Wojtczak A, Cieślak M (2015) Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment. Acta Biochim Pol 62(1):15–21Google Scholar
  66. 66.
    Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115Google Scholar
  67. 67.
    Alhouayek M, Muccioli GG (2014) COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 35(6):284–292Google Scholar
  68. 68.
    Morita Y, Yamamura M, Kawashima M, Aita T, Harada S, Okamoto H, Inoue H, Makino H (2001) Differential in vitro effects of IL-4, IL-10, and IL-13 on proinflammatory cytokine production and fibroblast proliferation in rheumatoid synovium. Rheumatol Int 20(2):49–54Google Scholar
  69. 69.
    Bermúdezhumarán LG, Motta JP, Aubry C, Kharrat P, Rousmartin L, Sallenave JM, Deraison C, Vergnolle N, Langella P (2015) Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Factories 14(1):26–42Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Linlin Chen
    • 1
  • Ping Kuang
    • 1
  • Huan Liu
    • 1
  • Qin Wei
    • 1
  • Hengmin Cui
    • 1
    • 2
    • 3
    Email author
  • Jing Fang
    • 1
    • 2
  • Zhicai Zuo
    • 1
    • 2
  • Junliang Deng
    • 1
    • 2
  • Yinglun Li
    • 1
    • 2
  • Xun Wang
    • 1
    • 2
  • Ling Zhao
    • 1
    • 2
  1. 1.College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
  2. 2.Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan ProvinceSichuan Agriculture UniversityChengduChina
  3. 3.Key Laboratory of Agricultural Information Engineering of Sichuan ProvinceSichuan Agriculture UniversityYa’anChina

Personalised recommendations