Advertisement

Biological Trace Element Research

, Volume 189, Issue 1, pp 134–144 | Cite as

High Doses of Copper and Mercury Changed Cecal Microbiota in Female Mice

  • Yezhao Ruan
  • Cong Wu
  • Xiaoquan Guo
  • Zheng Xu
  • Chenghong Xing
  • Huabin Cao
  • Caiying Zhang
  • Guoliang HuEmail author
  • Ping LiuEmail author
Article

Abstract

The aim of the present study was to investigate the effects of high doses of copper (Cu) and mercury (Hg) on the cecal microbiota in female mice. Forty-eight Kunming mice were randomly divided into the control group (CCk group), the Cu group (CCu group), the Hg group (CHg group), and the Cu + Hg group (CCH group). At the 90th day, cecal tissues were prepared for histopathological analysis and cecal contents for analysis by 16S rRNA sequencing method. Cecal tissues from treatment groups had histopathological lesions including increased thickness of inner muscularis and outer muscularis, widened submucosa, decreased goblet cells, mild to moderate necrosis of enterocytes, blunting of intestinal villi, and severe atrophy of central lacteal. Furthermore, compared to the CCk group, the abundance of bacteria genera Rikenella, Jeotgailcoccus, and Staphylococcus were significantly decreased, whereas the bacteria genus Corynebacterium was significantly increased in the CCu group. The abundance of bacteria genera of Sporosarcina, Jeotgailcoccus, and Staphylococcus were significantly decreased in the CHg group and CCH group. The bacteria genus Anaeroplasma was significantly increased in the CCH group. The results indicated that high doses of Cu and Hg caused histopathological lesions and changed the diversity of microbiota in the cecum of female mice, which provide a theoretical basis for more accurate assessment of the risk in intestinal diseases caused by Cu and Hg.

Keywords

Copper Mercury Cecum Microbiota 16S rRNA Mice 

Notes

Funding Information

This project was supported by the National Natural Science Foundation of China grant (No. 31492266, Beijing, P. R. China) awarded to PL, the Natural Science Foundation of Jiangxi Province grant (No. 20171ACB21026) awarded to PL and the Technology R&D Program of Jiangxi Province grant (No. GJJ170243, Nanchang, P. R. China) awarded to PL.

Compliance with Ethical Standards

All animals used in this experiment were approved by the Committee of Animal Welfare. Animal studies and experiments were approved and carried out according to Institutional Animal Care and Use Committee guidelines at College of Animal Science and Technology, Jiangxi Agricultural University.

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Sun R, Chen L (2016) Assessment of heavy metal pollution in topsoil around Beijing metropolis. PLoS One 11(5):e0155350.  https://doi.org/10.1371/journal.pone.0155350 CrossRefGoogle Scholar
  2. 2.
    Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor 108(1):27–38CrossRefGoogle Scholar
  3. 3.
    Duruibe JO, Ogwuegbu MOC (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118Google Scholar
  4. 4.
    Huang SH, Weng KP, Lin CC, Wang CC, Lee CT, Ger LP, Wu MT (2017) Maternal and umbilical cord blood levels of mercury, manganese, iron, and copper in southern Taiwan: a cross-sectional study. J Chin Med Assoc 80(7):442–451.  https://doi.org/10.1016/j.jcma.2016.06.007 CrossRefGoogle Scholar
  5. 5.
    Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98(12):6842–6847.  https://doi.org/10.1073/pnas.111058698 CrossRefGoogle Scholar
  6. 6.
    Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26(4–5):268–298.  https://doi.org/10.1016/j.mam.2005.07.015 CrossRefGoogle Scholar
  7. 7.
    Malinak CM, Hofacre CC, Collett SR, Shivaprasad HL, Williams SM, Sellers HS, Myers E, Wang YT, Franca M (2014) Tribasic copper chloride toxicosis in commercial broiler chicks. Avian Dis 58(4):642–649.  https://doi.org/10.1637/10864-051514-Case.1 CrossRefGoogle Scholar
  8. 8.
    Wang XY, Lin RC, Dong SF, Guan J, Sun L, Huang JM (2017) Toxicity of mineral Chinese medicines containing mercury element. China J of Chinese Materia Med 42(7):1258–1264.  https://doi.org/10.19540/j.cnki.cjcmm.20170224.002 Google Scholar
  9. 9.
    Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853.  https://doi.org/10.1016/j.scitotenv.2013.08.090 CrossRefGoogle Scholar
  10. 10.
    Funabashi H (2010) Minamata disease and environmental governance (environmental governance in Japan). Int J Jpn Sociol 15(1):7–25CrossRefGoogle Scholar
  11. 11.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696.  https://doi.org/10.1073/pnas.1005963107 CrossRefGoogle Scholar
  12. 12.
    Villanueva-Millan MJ, Perez-Matute P, Oteo JA (2015) Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 71(3):509–525.  https://doi.org/10.1007/s13105-015-0390-3 CrossRefGoogle Scholar
  13. 13.
    Lee WJ, Hase K (2014) Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol 10(6):416–424.  https://doi.org/10.1038/nchembio.1535 CrossRefGoogle Scholar
  14. 14.
    Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Thomas P, Pot B, Foligne B (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222(2):132–138.  https://doi.org/10.1016/j.toxlet.2013.07.021 CrossRefGoogle Scholar
  15. 15.
    Balkrishna AP (2011) The effect of heavy metals on the gastrointestinal microflora (GIM) of metapenaus monoceros and fenneropenaeus indicus. AJMBES Journal 13(1):119–124Google Scholar
  16. 16.
    Mickėnienė L, Šyvokienė J (1999) The effect of heavy metals on microorganisms of digestive tract of crayfish. Acta Zoologica Lituanica 9(2):37–39CrossRefGoogle Scholar
  17. 17.
    Mitra S, Keswani T, Ghosh N, Goswami S, Datta A, Das S, Maity S, Bhattacharyya A (2013) Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus. Toxicology 306:74–84.  https://doi.org/10.1016/j.tox.2013.01.001 CrossRefGoogle Scholar
  18. 18.
    Wildemann TM, Siciliano SD, Weber LP (2016) The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio. Toxicology 339:1–8.  https://doi.org/10.1016/j.tox.2015.11.004 CrossRefGoogle Scholar
  19. 19.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  20. 20.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359.  https://doi.org/10.1126/science.1124234 CrossRefGoogle Scholar
  21. 21.
    Chen H, Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:508.  https://doi.org/10.3389/fmicb.2014.00508 Google Scholar
  22. 22.
    Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefGoogle Scholar
  23. 23.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefGoogle Scholar
  24. 24.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072.  https://doi.org/10.1128/AEM.03006-05 CrossRefGoogle Scholar
  25. 25.
    White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352CrossRefGoogle Scholar
  26. 26.
    Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9(1):259CrossRefGoogle Scholar
  27. 27.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60.  https://doi.org/10.1186/gb-2011-12-6-r60 CrossRefGoogle Scholar
  28. 28.
    Tao TY, Liu F, Klomp L, Wijmenga C, Gitlin JD (2003) The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 278(43):41593–41596.  https://doi.org/10.1074/jbc.C300391200 CrossRefGoogle Scholar
  29. 29.
    Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662.  https://doi.org/10.1080/10408440600845619 CrossRefGoogle Scholar
  30. 30.
    Schelder S, Zaade D, Litsanov B, Bott M, Brocker M (2011) The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS One 6(7):e22143CrossRefGoogle Scholar
  31. 31.
    Su XL, Tian Q, Zhang J, Yuan XZ, Shi XS, Guo RB, Qiu YL (2014) Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int J Syst Evol Microbiol 64(Pt 9):2986–2991.  https://doi.org/10.1099/ijs.0.063917-0 CrossRefGoogle Scholar
  32. 32.
    Perera NCN, Godahewa GI, Lee J (2016) Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis ); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein. Fish Shellfish Immu 57:386–399CrossRefGoogle Scholar
  33. 33.
    Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS, Kang SO (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148(11):3705–3713CrossRefGoogle Scholar
  34. 34.
    Csire G, Demjén J, Timári S, Várnagy K (2013) Electrochemical and SOD activity studies of copper(II) complexes of bis(imidazol-2-yl) derivatives. Polyhedron 61(5):202–212CrossRefGoogle Scholar
  35. 35.
    Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804(2):245–262.  https://doi.org/10.1016/j.bbapap.2009.11.004 CrossRefGoogle Scholar
  36. 36.
    Martins I, Goulart J, Martins E, Morales-Roman R, Marin S, Riou V, Colaco A, Bettencourt R (2017) Physiological impacts of acute cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario. Aquat Toxicol 193:40–49.  https://doi.org/10.1016/j.aquatox.2017.10.004 CrossRefGoogle Scholar
  37. 37.
    Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750CrossRefGoogle Scholar
  38. 38.
    Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of enterococcus hirae. J Biol Chem 270(16):9217–9221CrossRefGoogle Scholar
  39. 39.
    Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19(4):239–262CrossRefGoogle Scholar
  40. 40.
    Sahlman L, Skarfstad EG (1993) Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem Biophys Res Commun 196(2):583–588.  https://doi.org/10.1006/bbrc.1993.2289 CrossRefGoogle Scholar
  41. 41.
    ElSaeed GSM, Maksoud A, Soheir A, Bassyouni HT, Raafat J, Agybi MH (2016) Mercury toxicity and DNA damage in patients with Down syndrome. Med Res J 15(15):22–2622CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health Economic and Technological Development District, College of Animal Science and TechnologyJiangxi Agricultural UniversityNanchangPeople’s Republic of China
  2. 2.Department of Statistics and Quantitative Life Sciences InitiativeThe University of Nebraska-LincolnLincolnUSA

Personalised recommendations