Skip to main content

Advertisement

Log in

Histone Deacetylation in the Promoter of p16 Is Involved in Fluoride-Induced Human Osteoblast Activation via the Inhibition of Sp1 Binding

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic fluorosis is a systemic condition which principally manifests as defects in the skeleton and teeth. Skeletal fluorosis is characterized by aberrant proliferation and activation of osteoblasts, however, the underlying mechanisms of osteoblast activation induced by fluoride are not fully understood. Therefore, we investigated the pathogenic mechanism of human primary osteoblast proliferation and activation in relation to histone acetylation of the promoter p16, a well-known cell cycle regulation-related gene. The results showed that sodium fluoride (NaF) induced deacetylation and decreased expression of the p16 gene via inhibition of specificity protein 1 (Sp1) binding to its response element, which accounts for NaF increasing cell viability and promoting proliferation in human primary osteoblasts. These results reveal the regulatory mechanism of histone acetylation of the p16 gene on osteoblast activation in skeletal fluorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang YL, Luo Q, Deng Q, Li T, Li Y, Zhang ZL, Zhong JJ (2015) Genes associated with sodium fluoride-induced human osteoblast apoptosis. Int J Clin Exp Med 8(8):13171–13178

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Krishnamachari KA (1986) Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease. Prog Food Nutr Sci 10(3–4):279–314

    CAS  PubMed  Google Scholar 

  3. Xu H, Wang CH, Zhao ZT, Zhang WB, Li GS (2008) Role of oxidative stress in osteoblasts exposed to sodium fluoride. Biol Trace Elem Res 123(1–3):109–115

    Article  CAS  Google Scholar 

  4. Jiang Y, Yang Y, Wang H, Darko GM, Sun D, Gao Y (2018) Identification of miR-200c-3p as a major regulator of SaoS2 cells activation induced by fluoride. Chemosphere 199:694–701

    Article  CAS  Google Scholar 

  5. Li GS (2009) Progress and enlightenment of the study on the mechanism of skeletal and dental fluorosis. Chin J Endemiol 28(2):121–122

    Google Scholar 

  6. Qu WJ, Zhong DB, Wu PF, Wang JF, Han B (2008) Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab 26(4):328–334

    Article  CAS  Google Scholar 

  7. Yan X, Yan X, Morrison A, Han T, Chen Q, Li J, Wang J (2011) Fluoride induces apoptosis and alters collagen I expression in rat osteoblasts. Toxicol Lett 200(3):133–138

    Article  CAS  Google Scholar 

  8. Zhang Y, Sun G, Jin Y, Wang Y (2003) Effects of fluoride on cell cycle and apoptosis in cultured osteoblasts of rats. Wei sheng yan jiu Journal of Hygiene Research 32(5):432–433

    CAS  PubMed  Google Scholar 

  9. Medema RH, Herrera RE, Lam F, Weinberg RA (1995) Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A 92(14):6289–6293

    Article  CAS  Google Scholar 

  10. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109

    Article  CAS  Google Scholar 

  11. Koprinarova M, Schnekenburger M, Diederich M (2016) Role of histone acetylation in cell cycle regulation. Curr Top Med Chem 16(7):1–12

    Google Scholar 

  12. Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22(9):836–845

    Article  CAS  Google Scholar 

  13. Kadonaga JT, Carner KR, Masiarz FR, Tjian R (1987) Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51(6):1079–1090

    Article  CAS  Google Scholar 

  14. Wang X, Pan L, Feng Y, Wang Y, Han Q, Han L, Han S, Guo J, Huang B, Lu J (2008) P300 plays a role in p16INK4a expression and cell cycle arrest. Oncogene 27(13):1894–18904

    Article  CAS  Google Scholar 

  15. Wu J, Xue L, Weng M, Sun Y, Zhang Z, Wang W, Tong T (2007) Sp1 is essential for p16INK4a expression in human diploid fibroblasts during senescence. PLoS One 2(1):e164

    Article  Google Scholar 

  16. Gidoni D, Kadonaga JT, Barrera-Saldaña H, Takahashi K, Chambon P, Tjian R (1985) Bidirectional SV40 transcription mediated by tandem Sp1 binding interactions. Science 230(4725):511–517

    Article  CAS  Google Scholar 

  17. Song L-S, Ha G-H, Kim J-M, Jeong SY, Lee H-C, Kim YS, Kim Y-J, Kwon TK, Kim NS (2011) Human ZNF312b oncogene is regulated by Sp1 binding to its promoter region through DNA demethylation and histone acetylation in gastric cancer[J]. Int J Cancer 129(9):2124–2133

    Article  CAS  Google Scholar 

  18. Wang X, Liu LL, Chen B, Fei BB, Lin BO, You-Jia XU, Orthopedics DO (2014) Estradiol alleviate the inhibition of osteoblasts activity caused by iron accumulation. Chin J Osteoporosis & Bone Miner Res 7(2):149–154

    Google Scholar 

  19. Kondo Y, Shen L, Issa J-PJ (2003) Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol 23(1):206–215

    Article  CAS  Google Scholar 

  20. Wang X, Feng Y, Pan L, Wang Y, Xu X, Lu J, Huang B (2007) The proximal GC-rich region of p16INK4a gene promoter plays a role in its transcriptional regulation. Mol Cell Biochem 301(1–2):259–266

    Article  CAS  Google Scholar 

  21. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica 2016:1–12

    Article  Google Scholar 

  22. Nielsen FH (2009) Micronutrients in parenteral nutrition: boron, silicon, and fluoride. Gastroenterology 137(5):S55–S60

    Article  CAS  Google Scholar 

  23. Chen R, Zhao L-D, Liu H, Li H-H, Ren C, Zhang P, Guo K-T, Zhang H-X, Geng D-Q, Zhang C-Y (2017) Fluoride induces neuroinflammation and alters Wnt signaling pathway in BV2 microglial cells. Inflammation 40(4):1123–1130

    Article  CAS  Google Scholar 

  24. Zhang C-Y, Chen R, Wang F, Ren C, Zhang P, Li Q, Li H-H, Guo K-T, Geng D-Q, C-f L (2017) EGb-761 attenuates the anti-proliferative activity of fluoride via DDK1 in PC-12 cells. Neurochem Res 42(2):606–614

    Article  CAS  Google Scholar 

  25. Tanaka Y, Maruo A, Fujii K, Nomi M, Nakamura T, Eto S, Minami Y (2000) Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res 15(10):1912–1923

    Article  CAS  Google Scholar 

  26. Council NR (2007) Fluoride in drinking water: a scientific review of EPA's standards. National Academies Press

  27. Huang Y, Wu J, Li R, Wang P, Han L, Zhang Z, Tong T (2011) B-MYB delays cell aging by repressing p16 (INK4α) transcription. Cell Mol Life Sci 68(5):893–901

    Article  CAS  Google Scholar 

  28. Yan W, Wu Y, Zeng B, Hua Z (2014) Effects of sodium fluoride treatment in vitro on cell proliferation, BMP-2 and BMP-3 expression in human osteosarcoma MG-63 cells. Biol Trace Elem Res 162(1–3):18–25

    Google Scholar 

  29. Farley JR, Wergedal JE, Baylink DJ (1983) Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 222(4621):330–332

    Article  CAS  Google Scholar 

  30. Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a–Arf: progress and puzzles. Curr Opin Genet Dev 13(1):77–83

    Article  CAS  Google Scholar 

  31. Gandhi D, Naoghare PK, Bafana A, Kannan K, Sivanesan S (2017) Fluoride-induced oxidative and inflammatory stress in osteosarcoma cells: does it affect bone development pathway? Biol Trace Elem Res 175(1):1–9

    Article  Google Scholar 

  32. Pramanik S, Saha D (2017) The genetic influence in fluorosis. Environ Toxicol Pharmacol 56:157–162

    Article  CAS  Google Scholar 

  33. Daiwile AP, Sivanesan S, Izzotti A, Bafana A, Naoghare PK, Arrigo P, Purohit HJ, Parmar D, Kannan K (2015) Noncoding RNAs: possible players in the development of fluorosis. Biomed Res Int 2015(2):323–333

    Google Scholar 

  34. Zhu J-Q, Si Y-J, Cheng L-Y, Xu B-Z, Wang Q-W, Zhang X, Wang H, Liu Z-P (2014) Sodium fluoride disrupts DNA methylation of H19 and Peg3 imprinted genes during the early development of mouse embryo. Arch Toxicol 88(2):241–248

    Article  CAS  Google Scholar 

  35. Zhao L, Zhang S, An X, Tan W, Tang B, Zhang X, Li Z (2015) Sodium fluoride affects DNA methylation of imprinted genes in mouse early embryos. Cytogenet Genome Res 147(1):41–47

    Article  Google Scholar 

  36. Chen S, Zhang AH, Pan XL (2016) The effects of fluoride on hypermethylation, transcription and expression of p16 gene in osteoblasts of rats. Chin J Endemiol 35(2):89–93

    Google Scholar 

  37. Yan WM, Ming J, You TZ, Wang XL, Luo P, Pan XL (2018) The effects of sodium fluoride on histone acetylation of CyclinD1/cyclin-dependent kinases 4 gene in human osteoblasts. Chin J Endemiol 37(1):13–18

    Google Scholar 

  38. You TZ, Liao YD, Yan WM, Yu C, Luo P, Pan XL (2016) Effects of sodium fluoride on histone acetylation and expression of p21 gene in human primary osteoblasts. J Environ Occup Med 33(6):536–541

    Google Scholar 

  39. Yin S, Song C, Wu H, Chen X, Zhang Y (2015) Adverse effects of high concentrations of fluoride on characteristics of the ovary and mature oocyte of mouse. PLoS One 10(6):e0129594

    Article  Google Scholar 

  40. Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: histone modifications. Cell 159(2):458–458.e1

    Article  CAS  Google Scholar 

  41. Zhang C, Zhong JF, Stucky A, Chen XL, Press MF, Zhang X (2015) Histone acetylation: novel target for the treatment of acute lymphoblastic leukemia. Clin Epigenetics 2015(7):117–126

    Article  Google Scholar 

  42. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599–606

    Article  CAS  Google Scholar 

  43. He S, Bauman D, Davis JS, Loyola A, Nishioka K, Gronlund JL, Reinberg D, Meng F, Kelleher N, McCafferty DG (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci 100(21):12033–12038

    Article  CAS  Google Scholar 

  44. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  Google Scholar 

  45. Smith CM, Gafken PR, Zhang Z, Gottschling DE, Smith JB, Smith DL (2003) Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4. Anal Biochem 316(1):23–33

    Article  CAS  Google Scholar 

  46. Suzuki M, Ikeda A, Bartlett JD (2017) Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation. Arch Toxicol 2:1–11

    Google Scholar 

  47. Koprinarova M, Schnekenburger M, Diederich M (2016) Role of histone acetylation in cell cycle regulation. Curr Top Med Chem 16(7):732–744

    Article  CAS  Google Scholar 

  48. Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change. Cell 57(3):449–457

    Article  CAS  Google Scholar 

  49. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72(1):73–84

    Article  CAS  Google Scholar 

  50. Zhang M, Wang A, Xia T, He P (2008) Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol Lett 179(1):1–5

    Article  CAS  Google Scholar 

  51. Wang HW, Zhao WP, Liu J, Tan PP, Zhang C, Zhou BH (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 186:911–918

    Article  CAS  Google Scholar 

  52. Damaskos C, Valsami S, Kontos M, Spartalis E, Kalampokas T, Kalampokas E, Athanasiou A, Moris D, Daskalopoulou A, Davakis S, Tsourouflis G, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D (2017) Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res 37(1):35–46

    Article  CAS  Google Scholar 

  53. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81260418) and the Nomarch Fund of Guizhou Province (No. [2011]54). The authors thank Donald L. Hill (University of Alabama at Birmingham, USA) for manuscript editing.

Author information

Authors and Affiliations

Authors

Contributions

JM performed experiments, analyzed data, and drafted manuscript; SW, TY, XW, and CY performed experiments and contributed to the data acquisition; PL and AZ contributed toward study supervision; XP put forward the concept of the study, designed the study, and edited manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueli Pan.

Ethics declarations

The Institutional Ethics Committee for Scientific Research approved the study protocol, and a written consent was obtained from each participant of the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, J., Wu, S., You, T. et al. Histone Deacetylation in the Promoter of p16 Is Involved in Fluoride-Induced Human Osteoblast Activation via the Inhibition of Sp1 Binding. Biol Trace Elem Res 188, 373–383 (2019). https://doi.org/10.1007/s12011-018-1413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1413-z

Keywords

Navigation