Advertisement

Biological Trace Element Research

, Volume 187, Issue 2, pp 596–601 | Cite as

Assessment of Toxic Metals and Hazardous Substances in Tattoo Inks Using Sy-XRF, AAS, and Raman Spectroscopy

  • Marta Manso
  • Sofia Pessanha
  • Mauro Guerra
  • Uwe Reinholz
  • Cláudia Afonso
  • Martin Radtke
  • Helena Lourenço
  • Maria Luísa Carvalho
  • Ana Guilherme Buzanich
Article

Abstract

Synchrotron radiation X-ray fluorescence spectroscopy, in conjunction with atomic absorption and Raman spectroscopy, was used to analyze a set of top brand tattoo inks to investigate the presence of toxic elements and hazardous substances. The Cr, Cu, and Pb contents were found to be above the maximum allowed levels established by the Council of Europe through the resolution ResAP(2008)1 on requirements and criteria for the safety of tattoos and permanent makeup. Raman analysis has revealed the presence of a set of prohibited substances mentioned in ResAP(2008)1, among which are the pigments Blue 15, Green 7, and Violet 23. Other pigments that were identified in white, black, red, and yellow inks are the Pigment White 6, Carbon Black, Pigment Red 8, and a diazo yellow, respectively. The present results show the importance of regulating tattoo ink composition.

Keywords

Tattoo inks Toxic metals Hazardous substances Spectroscopic techniques 

Notes

Acknowledgments

We thank HZB for the allocation of synchrotron radiation beamtime.

Funding Information

This study was supported by the Portuguese Foundation for Science and Technology grants BPD/92455/2013 and SFRH/BPD/94234/2013 and by the research center grant no. UID/FIS/04559/2013 to LIBPhys-UNL, from the FCT/MCTES/PIDDAC.

References

  1. 1.
    Europe C, Resolution ResAP (2008)1 on requirements and criteria for the safety of tattoos and permanent make-up (superseding Resolution ResAP(2003)2 on tattoos and permanent make-up) 2008Google Scholar
  2. 2.
    Deter-Wolf A, (2013) The material culture and Middle Stone Age origins of ancient tattooing in “Tattoos and Body Modifications in Antiquity: Proceedings of the sessions at the EAA annual meetings in The Hague and Oslo, 2010/11”. Zurich Studies in Archaeology. 9. Chronos Verlag. pp. 15–26Google Scholar
  3. 3.
    Piccinini P, Pakalin S, Contor L, Bianchi Senaldi C (2016) JRC science for policy report: safety of tattoos and permanent make-up final, European commission technical report 2016Google Scholar
  4. 4.
    U. S. Food and D. Administration (2009) FDA Consum Health InformationGoogle Scholar
  5. 5.
    Vasold R, Engel E, Konig B, Landthaler M, Baumler W (2008) Health risks of tattoo colours. Anal Bioanal Chem 391:9–13CrossRefGoogle Scholar
  6. 6.
    Serup J (2017) Atlas of illustrative cases of tattoo complications. Curr Prob Dermatol 52:139–229CrossRefGoogle Scholar
  7. 7.
    Cuyper C (2010) Materials used in body art. In: Cotapos M, Cuyper C (eds) Dermatologic complications with body art - tattoos, piercing and permanent make-up. Springer-Verlag, Berlin Heidelberg, pp 13–26CrossRefGoogle Scholar
  8. 8.
    Forte G, Petrucci F, Cristaudo A, Bocca B (2009) Market survey on toxic metals contained in tattoo inks. Sci Total Environ 407:5997–6002CrossRefGoogle Scholar
  9. 9.
    Eghbali K, Mousavi Z, Ziarati P (2014) Determination of heavy metals in tattoo ink. Biosci, Biotechnol Res Asia 11:941–946CrossRefGoogle Scholar
  10. 10.
    Schreiver I, Hutzler C, Andree S, Laux P, Luch A (2016) Identification and hazard prediction of tattoo pigments by means of pyrolysis-gas chromatography/mass spectrometry. Arch Toxicol 90:1639–1650CrossRefGoogle Scholar
  11. 11.
    Poon KWC, Dadour IR, McKinley AJ (2008) In situ chemical analysis of modern organic tattooing inks and pigments by micro-Raman spectroscopy. J Raman Spectrosc 39:1227–1237CrossRefGoogle Scholar
  12. 12.
    Cinotti E, Labeille B, Boukenter A, Ouerdane Y, Cambazard F, Perrot JL (2015) Characterization of coal tattoos by Raman spectroscopy. Skin Res Technol 21:511–512CrossRefGoogle Scholar
  13. 13.
    Bocca B, Sabbioni E, Micetic I, Alimonti A, Petrucci F (2017) Size and metal composition characterization of nano- and microparticles in tattoo inks by a combination of analytical techniques. J Anal At Spectrom 32:616–628CrossRefGoogle Scholar
  14. 14.
    Høgsberg T, Loeschner K, Löf D, Serup J (2011) Tattoo inks in general usage contain nanoparticles. Br J Dermatol 165:1210–1218CrossRefGoogle Scholar
  15. 15.
    Riesemeier H, Ecker K, Gorner W, Muller BR, Radtke M, Krumrey M (2005) Layout and first XRF applications of the BAMline at BESSY II. X-Ray Spectrom 34:160–163CrossRefGoogle Scholar
  16. 16.
    Guerra M, Manso M, Pessanha S, Longelin S, Carvalho ML (2013) Theoretical and experimental study on the angular dependence of scattering processes in X-ray fluorescence systems. X-Ray Spectrom 42:402–407CrossRefGoogle Scholar
  17. 17.
    EC for Standardization (CEN), European standard EN 14084—foodstuffs determination of trace elements determination of lead, cadmium, zinc, Copper and iron by atomic absorption spectrometry (AAS) after microwave digestion 2003Google Scholar
  18. 18.
    EP Agency, Test method 7473: Mercury in solids and solutions by thermal decomposition, amalgamation and atomic absorption spectrometry. SW-846, USA 1998Google Scholar
  19. 19.
    Cao P, Bismuth oxychloride (biocl) pigment comprising ‘locked in’ carbon black particles (2004) WO Patent App. PCT/US2003/025,781Google Scholar
  20. 20.
    Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544CrossRefGoogle Scholar
  21. 21.
    Basketter DA, Angelini G, Ingber A, Kern PS, Menné T (2003) Nickel,chromium and cobalt in consumer products: revisiting safe levels in the new millennium. Contact Dermatitis 49:1–7CrossRefGoogle Scholar
  22. 22.
    Official Journal of the European Communities, 1976, last amended September 24, 2008Google Scholar
  23. 23.
    Bouchard M, Rivenc R, Menke C, Learner T (2009) Micro-FTIR and micro-Raman: study of paints used by Sam Francis. e-PS 6:27–37Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marta Manso
    • 1
  • Sofia Pessanha
    • 1
  • Mauro Guerra
    • 1
  • Uwe Reinholz
    • 2
  • Cláudia Afonso
    • 3
  • Martin Radtke
    • 2
  • Helena Lourenço
    • 3
  • Maria Luísa Carvalho
    • 1
  • Ana Guilherme Buzanich
    • 2
  1. 1.LIBPhys-UNL Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação, Departamento de Física, Faculdade de Ciências e Tecnologia (FCT)Universidade Nova de LisboaCosta de CaparicaPortugal
  2. 2.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  3. 3.Division of Aquaculture and UpgradingIPMA Portuguese Institute for the Sea and AtmosphereLisbonPortugal

Personalised recommendations