Advertisement

Biological Trace Element Research

, Volume 187, Issue 2, pp 517–525 | Cite as

Determination of Seasonal Vitamin and Mineral Contents of Sea Bream (Sparus aurata L., 1758) Cultured in Net Cages in Central Black Sea Region

  • Dilara Kaya Öztürk
  • Birol Baki
  • İsmihan Karayücel
  • Recep Öztürk
  • Gülşen Uzun Gören
  • Sedat Karayücel
Article

Abstract

This study aimed to determine the seasonal vitamin and mineral contents of sea bream (Sparus aurata) cultured in net cages in Central Black Sea region. The average seasonal A, D3, and E vitamins values in fish meat were between 0.27 ± 0.02–0.60 ± 0.00, 0.98 ± 0.01–1.70 ± 0.00, and 3.10 ± 0.14–6.00 ± 0.21 mg/kg, respectively (p < 0.05). The average seasonal Ca, Fe, K, Mg, Na, P, Zn, and Se values in fish meat were between 276.90 ± 0.99–1788.50 ± 51.27 (p < 0.05), 3.50 ± 0.12–4.47 ± 0.18 (p > 0.05), 4244.50 ± 8.84–4761.50 ± 1.06 (p < 0.05), 251.55 ± 2.55–312.65 ± 11.42 (p < 0.05), 56.49 ± 0.04–128.75 ± 0.18 (p < 0.05), 2234.50 ± 15.20–2619.00 ± 7.07 (p < 0.05), 5.62 ± 0.10–15.30 ± 0.22 (p < 0.05), and 0.30 ± 0.00–0.38 ± 0.01 mg/kg (p > 0.05), respectively. As a result, it can be concluded that sea bream cultured in the Central Black Sea region is a rich source of nutrients in terms of vitamins and mineral matters, and fish size, feed quality, and the environmental factors are influential on the contents of vitamin and mineral substances in the fish tissue.

Keywords

Sea bream Sparus aurata Black Sea Vitamin Mineral matters 

Notes

Funding Information

This work was supported by Sinop University Scientific Research Coordination Unit. Project Number: SÜF-1901-17-01, 2017.

References

  1. 1.
    The Food and Agriculture Organization (FAO) (2018) http://www.fao.org/3/a-i5555e.pdf (Date of Access: 14.01.2018)
  2. 2.
    The Food and Agriculture Organization (FAO) (2018) http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en
  3. 3.
    BSGM (2017) General directorate of fisheries and aquaculture https://www.tarim.gov.tr/sgb/Belgeler/SagMenuVeriler/BSGM.pdf
  4. 4.
    Turan H, Kaya Y, Sönmez G (2006) Balık etinin besin değeri ve insan sağlığındaki yeri. E.U. J Fish Aquat Sci 23(1/3):505–508 (in Turkish)Google Scholar
  5. 5.
    Tacon AGJ, Metian M (2013) Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev Fish Sci 21:22–38.  https://doi.org/10.1080/10641262.2012.753405 CrossRefGoogle Scholar
  6. 6.
    Lall S, Milley J (2008) Trace mineral requirements of fish and crustaceans. In: Schlegel P, Durosay S, Jongbloed AW (eds) Trace elements in animal production systems. Wageningen, Academic Press, pp 203–214Google Scholar
  7. 7.
    NRC (2011) National Research Council (US). Committee on the nutrient requirements of fish and shrimp. Washington, DC: National Academies PressGoogle Scholar
  8. 8.
    NRC (1993) Nutrient requirements of fish. National Academy Press, Washington, DC 114ppGoogle Scholar
  9. 9.
    Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35:83–108.  https://doi.org/10.1111/j.1365-2761.2011.01333.x CrossRefPubMedGoogle Scholar
  10. 10.
    Li MH, Robinson EH (2001) Dietary ascorbic acid requirement for growth and health in fish. In: Lim C, Webster CD (eds) Nutrition and fish health. Haworth Press, New York, pp 163–187Google Scholar
  11. 11.
    Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284CrossRefGoogle Scholar
  12. 12.
    Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88CrossRefGoogle Scholar
  13. 13.
    Kurt D, Kanay Z, Önen A, Güzel C, Denli O, Ceylan K (1998) A Vitamininin Stres Uygulanan Sıçanlarda Mide Mukozal Bariyeri Üzerine Etkileri. İç Hastalıkları Dergisi 5(4):247–249Google Scholar
  14. 14.
    Cerezuela R, Cuesta A, Meseguer J, Esteban MA (2009) Effects of dietary vitamin D3 administration on innate immune parameters of seabream (Sparus aurata L.). Fish Shellfish Immunol 26:243–248CrossRefGoogle Scholar
  15. 15.
    Humble MB (2010) Vitamin D, light and mental health. J Photochem Photobiol B 101:142–149CrossRefGoogle Scholar
  16. 16.
    Milaneschi Y, Shardell M, Corsi AM, Vazzana R, Bandinelli S, Guralnik JM, Ferrucci L (2010) Serum 25-hydroxyvitamin D and depressive symptoms in older women and men. J Clin Endocrinol Metab 95:3225–3233CrossRefGoogle Scholar
  17. 17.
    Şahin T, Çiftçi Y, Ertekin A, Güneş E (1997) Growth performance of gilhead sea bream (Sparus aurata L., 1758) in the eastern Black Sea conditions. EÜ Su Ürünleri Derg 14(1–2):113–118Google Scholar
  18. 18.
    Şahin T, Akbulut B, Aksungur M (1999) Investigations on weight loss occuring in winter season and growth of gilthead sea bream (Sparus aurata) reared in the Black Sea. Tr J Mar Sci 5:79–86Google Scholar
  19. 19.
    Baki B (2014) Effects of different feed amounts on growth performance of gilthead sea bream (Sparus aurata) in the Black Sea. Afr J Biotechnol 15(35):3576–3580.  https://doi.org/10.5897/AJB2014.13811 CrossRefGoogle Scholar
  20. 20.
    AOAC (2001) Official Methods of Analysis. Determination of Vitamin A (Retinol) in Foods, Liquid Chromatography, First ActionGoogle Scholar
  21. 21.
    Serra R, Isani G, Cattani, Carpene E (1996) Effect of different levels of dietary zinc on the gilthead, Sparus aurata during the growth season. Biol Trace Elements Res 51:107–116CrossRefGoogle Scholar
  22. 22.
    Pleadın J, Lešıć T, Krešıć G, Barıć R, Bogdanovıćd T, Oraıć D, Vulıć A, Legac A, Zrnčıć S (2017) Nutritional quality of different fish species farmed ın the Adriatic Sea. Ital J Food Sci 29:537–549Google Scholar
  23. 23.
    Kaba N, Yücel Ş, Baki B (2009) Comparative analysis of nutritive composition, fatty acids, amino acids and vitamin contents of wild and cultured gilthead seabream (Sparus aurata L.,1758). J Anim Vet Adv 8(3):541–544Google Scholar
  24. 24.
    Özden Ö, Erkan N (2008) Comparison of biochemical composition of three aqua cultured fishes (Dicentrarchus labrax, Sparus aurata, Dentex dentex). Int J Food Sci Nutr 59:545–557.  https://doi.org/10.1080/09637480701400729 CrossRefPubMedGoogle Scholar
  25. 25.
    Yıldız M (2008) Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish. J Appl Ichthyol 24:589–594CrossRefGoogle Scholar
  26. 26.
    Erkan N, Özden Ö (2007) Proximate composition and mineral cotent in aqua cultured sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) analyzed by ICP-MS. Food Chem 102:721–725CrossRefGoogle Scholar
  27. 27.
    Carpene E, Serra R, Maurizio, Isani G (1999) Seasonal changes of zinc, cupper and iron in gilthead Sea bream (Sparus aurata) fed fortified diets. Biol Trace Elem Res 69:121–139CrossRefGoogle Scholar
  28. 28.
    Carpene E, Martin B, Libera D (1998) Biochemical differences in lateral muscle of wild and farmed gilthead seabream (Sparus aurata L.). Fish Physiol Biochem 19(3):229–238CrossRefGoogle Scholar
  29. 29.
    Zotos A, Vouzanidou M (2012) Seasonal changes in composition, fatt acid, cholesterol and mineral content of six highly commercial fish species of Greece. Food Sci Technol Int 18:1–11.  https://doi.org/10.1177/1082013211414785 CrossRefGoogle Scholar
  30. 30.
    Baki B, Gönener S, Kaya D (2015) Comparison of food, amino acid and fatty acid compositions of wild and cultivated sea bass (Dicentrarchus labrax L.,1758). Turk J Fish Aquat Sci 15:175–179CrossRefGoogle Scholar
  31. 31.
    Gatta PP, Pirini M, Testi S, Vingola G, Monetti PG (2000) The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquac Nutr 6:47–52CrossRefGoogle Scholar
  32. 32.
    Álvarez V, Medina I, Prego R, Aubourg SP (2009) Lipid and mineral distribution in different zones of farmed and wild blackspot seabream (Pagellus bogaraveo). Eur J Lipid Sci Technol 111:957–966CrossRefGoogle Scholar
  33. 33.
    Costa S, Afonso C, Bandarra NM, Gueifao S, Castanheira I, Carvalho ML et al (2013) The emerging farmed fish species meagre (Argyrosomus regius): how culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food Chem Toxicol 60:277–285CrossRefGoogle Scholar
  34. 34.
    Chaguri MP, Maulvault AV, Costa S, Gonçalves A, Nunes ML, Carvalho ML et al (2017) Chemometrics tools to distinguish wild and farmed meagre (Argyrosomus regius). J Food Process Preserv 41.  https://doi.org/10.1111/jfpp.13312
  35. 35.
    Rigos G, Grigorakis K, Koutsodimou M, Gialamas I, Foumtoulaki E, Nengas I (2012) Comparison of muscle fatty acid and vitamin composition between wild and farmed common dentex (Dentex dentex). J Biol Res Thessaloniki 17:1–8Google Scholar
  36. 36.
    Stephan G, Guillaume J, Lamour F (1995) Lipid peroxidation in turbot (Scophthahus maximus) tissue: effect of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids. Aquaculture 130:251–268CrossRefGoogle Scholar
  37. 37.
    Cieślik I, Migdał W, Topolska K, Gambuś F, Szczurowska K, Cieślik E (2017) Changes in macro- and microelements in freshwater fish during food processing. J Elem.  https://doi.org/10.5601/jelem.2016.21.1.1128
  38. 38.
    Siemianowska E, Barszcz AA, Skibniewska KA, Markowska A, Polak-Juszczak L et al (2016) Mineral content of muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). J Elem.  https://doi.org/10.5601/jelem.2015.20.4.1004
  39. 39.
    Gökoğlu N, Yerlikaya, Cengiz E (2004) Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem 84:19–22CrossRefGoogle Scholar
  40. 40.
    Brucka-Jastrzêbska E, Kaqczuga D (2011) Level of magnesium in tissues and organs of freshwater fish. J Elem 16(1):7–20Google Scholar
  41. 41.
    Celik M, Gökçe MA, Başusta N, Küçükgülmez A, Taşbozan O, Tabakoğlu ŞS (2008) Nutritional quality of ranbow trout (Oncorhynchus mykiss) caught from the Atatürk Dam Lake in Turkey. J Muscle Foods 19:50–61CrossRefGoogle Scholar
  42. 42.
    Özyurt G, Polat A, Loker GB (2009) Vitamin and mineral content of pike perch (Sander lucioperca), common carp (Cyprinus carpio), and European catfish (Silurus glanis). Turk J Vet Anim Sci 33(4):351–356Google Scholar
  43. 43.
    Ersoy B, Özeren A (2009) The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem 115:419–422CrossRefGoogle Scholar
  44. 44.
    Martinez-Valverde I, Jesus Periago M, Santaella M, Ros G (2000) The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem 71:503–509CrossRefGoogle Scholar
  45. 45.
    Cho CY (1983) Nutrition and fish health. Edited by Meyer FD, Warren JW, Carey TG. A Guide To Integrated Fish Health Management in The Great Lakes Basin. Special Publication 83–2. (63-73ss)Google Scholar
  46. 46.
    Food and Nutrition Board, Institute of Medicine, National Academies,Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Elements https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t3/?report=objectonly (Date of Access: 15.01.2018)
  47. 47.
    Üstdal KM, Karaca L, Testereci H, Kuş S, Paşaoğlu H, Türköz Y (2005) Biyokimya:p170Google Scholar
  48. 48.
    Poston HA, Combs GF Jr, Leibovitz L (1976) Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): gross, histological and biochemical deficiency signs. J Nutr 106(18):892–904CrossRefGoogle Scholar
  49. 49.
    Bell JG, Pirie BJS, Adron JW, Cowey CB (1986) Some effects of selenium deficiency on glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri). Br J Nutr 55:305–311CrossRefGoogle Scholar
  50. 50.
    Gatlin DM, Poe WE, Wilson RF (1986) Effects of singular and combined dietary deficiencies of selenium and vitamin E on fingerling channel catfish (Ictalurus punctatus). J Nutr 116:1061–1067CrossRefGoogle Scholar
  51. 51.
    Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207CrossRefGoogle Scholar
  52. 52.
    The Commission of the European Communities (2018) http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:285:0009:0012:EN:PDF (Date of Access: 16.01.2018)
  53. 53.
    Dietary Guidelines For Turkey (2018) http://www.fao.org/3/a-as697e.pdf (Date of Access: 16.01.2018)
  54. 54.
    Larsen R, Eilertsen KE, Elvevoll EO (2011) Health benefits of arine foods and ingredients. Biotechnol Adv 29:508–518CrossRefGoogle Scholar
  55. 55.
    National Institutes of Health (2018) (Date of access: 15.01.2018) https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx
  56. 56.
    Lynch SR (1997) Interaction of iron with other nutrients. AGRIS, 55: (4)102–110Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Fisheries and Aquatic Science, Department of AquacultureSinop UniversitySinopTurkey
  2. 2.Sagun Aquaculture, Fisheries Ind. Tra. Lmt. Com.SinopTurkey

Personalised recommendations