Advertisement

Biological Trace Element Research

, Volume 187, Issue 1, pp 181–191 | Cite as

Moringa oleifera Leaves Extract Protects Titanium Dioxide Nanoparticles-Induced Nephrotoxicity via Nrf2/HO-1 Signaling and Amelioration of Oxidative Stress

  • K. H. Abdou
  • Walaa A. MoselhyEmail author
  • Hanaa M. Mohamed
  • El-Shaymaa El-Nahass
  • Ahlam G. Khalifa
Article
  • 179 Downloads

Abstract

The efficacy of Moringa oleifera leaf extract (MO) in alleviating nephrotoxicity induced by titanium dioxide nanoparticles (TiO2 NPs) was studied. Rats were divided into four groups. Group I received distilled water. Group II received TiO2NPs. Group III received both TiO2NPs suspension beside MO. Group IV received MO only. Kidney KIM-1, NF-кB TNF-α, and HSP-70 expression were significantly upregulated while both Nrf2 and HO-1were significantly downregulated in TiO2NPs-treated rats. MO decreases expression of KIM-1, NF-кB, TNF-α, and HSP-70. In addition, MO has markedly upregulated the expression of Nrf2 and HO-1. In conclusion, MO can inhibit nephrotoxicity by suppressing oxidative stress and inflammation. These effects are suggested to be mediated by activating Nrf2/HO-1.The biochemical analysis and histopathological finding reinforced these results. These data support the antioxidant properties’ nutraceutical role of MO against TiO2NPs-induced toxicity.

Keywords

Titanium dioxide nanoparticles Moringa oleifera Nephrotoxicity Nrf2/HO-1 Oxidative stress 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Naya MK, obayashi N, Ema M, Kasamoto S, Fukumuro M, Takami S, Nakajima M (2012) In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol 62:1–6CrossRefGoogle Scholar
  2. 2.
    Gui S, Zhang Z, Zheng L, Cui Y, Li X, Li N, Sang X (2011) Molecular mechanism of kidney injury in mice caused by titanium dioxide nanoparticles. J Hazard Mater 2011(195):365–370Google Scholar
  3. 3.
    Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560CrossRefGoogle Scholar
  4. 4.
    Ma L, Ze Y, Liu J, Liu H, Liu C, Li Z, Zhao J, Yan J, Duan Y, Xie Y, Hong F (2009) Direct evidence for interaction between nano-anatase and superoxide dismutase from rat erythrocytes. Spectrochim Acta A Mol Biomol Spectrosc 73:330–335CrossRefGoogle Scholar
  5. 5.
    Ma L, Zhao J, Wang J, Liu J, Duan Y, Liu H, Li N, Yan J, Ruan J, Wang H, Hong F (2009) The acute liver injury in mice caused by Nano-Anatase TiO2. Nanoscale Res Lett 4:1275–1285CrossRefGoogle Scholar
  6. 6.
    Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38:439–447CrossRefGoogle Scholar
  7. 7.
    Eleonore F, Birgit J, Eva R (2013) Titanium dioxide nanoparticles and the oral uptake-route. Bio Nano Mat 14(1–2):25–35Google Scholar
  8. 8.
    Jia X, Wang S, Zhou L, Sun L (2017) The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles. Nanoscale Res Lett 12:478.  https://doi.org/10.1186/s11671-017-2242-2 on Mice
  9. 9.
    De Matteis V, Rinaldi R (2018) Toxicity assessment in the nanoparticle era. Adv Exp Med Biol 1048:1–19.  https://doi.org/10.1007/978-3-319-72041-8_1 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Falowoa B, Mukumboa E, Idamokoroac M, LorenzobAnthony M, Muchenje A (2018) Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: a review. Food Res Int 106:317–334CrossRefGoogle Scholar
  11. 11.
    Singh Y, Jale R, Prasad K K, Sharma RK, Prasad K (2012) Moringa oleifera: a miracle tree, proceedings, International Seminar on Renewable Energy for Institutions and Communities in Urban and Rural Settings, Manav Institute, Jevra, India, pp 73–81Google Scholar
  12. 12.
    Khalafalla MM, Abdellatef E, Dafalla HM, Nassrallah AA, Aboul-Enein KM, Lightfoot DA, El-Deebm FE (2010) Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr J Biotechnol 9(49):8467–8471Google Scholar
  13. 13.
    YangY QZ, Zenga W, Yanga T, Cao Y, Mei C, Kuang Y (2017) Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev 6(3):279–289Google Scholar
  14. 14.
    Jin ZK, Tian PX, Wang XZ, Xue WJ, Ding X, Zheng MJ, Ding CG (2013) Kidney injury molecule-1 and osteopontin: new markers for prediction of early kidney transplant rejection. Mol Immunol 54:457–464CrossRefGoogle Scholar
  15. 15.
    Mahmoud AM, Zaki AR, Hassan ME, Mostafa-Hedeab G (2017) Commiphora molmol resin attenuates diethylnitrosamine/phenobarbital-induced hepatocarcinogenesis by modulating oxidative stress, inflammation, angiogenesis and Nrf2/ARE/HO-1 signaling. Chem Biol Interact 270:41–50CrossRefGoogle Scholar
  16. 16.
    He XH, Yan XT, Wang YL, Wang CY, Zhang ZZ, Zhan J (2014) Transduced PEP-1-haem oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury. J Surg Res 187:77–84CrossRefGoogle Scholar
  17. 17.
    Zhan M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47CrossRefGoogle Scholar
  18. 18.
    Farghali A, Khedr H, Abdel Khalek A (2007) Catalytic decomposition of carbondioxide over freshly reduced activated CuFe2O4 nano-crystals. J Mater Process Technol 181:81–87CrossRefGoogle Scholar
  19. 19.
    Ugwu OC, Nwodo FC, Joshua PE, Abubakar B, Ossai EC, Christian O (2013) Phytochemical and acute toxicity studies of Moinga oleifera ethanol leaf extract. Int J Life Sci Pharm Res 2(2):65–71Google Scholar
  20. 20.
    Al-Rasheed NM, Faddah LM, Mohamed AM, Abdel Baky NA, Al-Rasheed NM, Mohammad RA (2013) Potential impact of quercetin and idebenone against immuno-inflammatory and oxidative renal damage induced in rats by titanium dioxide nanoparticles toxicity. J Oleo Sci 62(11):961–971CrossRefGoogle Scholar
  21. 21.
    Singh D, Arya PV, Aggarwal VP, Gupta RS (2014) Evaluation of antioxidant and hepatoprotective activities of Moringa oleifera Lam. leaves in carbon tetrachloride-intoxicated rats. Antioxidants 3:569–591CrossRefGoogle Scholar
  22. 22.
    Patton CJ, Crouch SR (1977) Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Ann Chem 49:464–469CrossRefGoogle Scholar
  23. 23.
    Jaffe MZ (1986) Technological opportunity and spillovers of R&D: evidence from firms’ patents, profits and market value. Am Econ Rev 76:984–999Google Scholar
  24. 24.
    Barham D, Trinder P (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97(151):142–145CrossRefGoogle Scholar
  25. 25.
    Dumas BT, Watson WA, Biggs HG (1997) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 258:21–30CrossRefGoogle Scholar
  26. 26.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Ann Biochemist 95:351–358CrossRefGoogle Scholar
  27. 27.
    Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Commun 46:849–854CrossRefGoogle Scholar
  28. 28.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–890PubMedPubMedCentralGoogle Scholar
  29. 29.
    Mannervik B, Guthenberg C (1981) [28] Glutathione transferase (human placenta). Methods Enzymol 77:231–235CrossRefGoogle Scholar
  30. 30.
    Kar M, Mishra D (1976) Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319CrossRefGoogle Scholar
  31. 31.
    Koster JF, Biemond P, Swaak AJ (1986) Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Ann Rheum Dis 45(1):44–46CrossRefGoogle Scholar
  32. 32.
    Mahmoud AM, Germous MO, Alotaibi MF, Hussein O (2017) Possible involvement of Nrf2 and PPAR gamma upregulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomed Pharmacother 86:297–306CrossRefGoogle Scholar
  33. 33.
    Mahmoud AM (2014) Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation. Can J Physiol Pharm 92:717–724CrossRefGoogle Scholar
  34. 34.
    Livak KJ, Schmittgen TD (2011) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method 25:402–408CrossRefGoogle Scholar
  35. 35.
    Bancroft J, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone Elsevier, PhiladelphiaGoogle Scholar
  36. 36.
    Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN (2010) Markers of renal function tests. N Am J Med Sci 2(4):170–173PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628(2):99–106CrossRefGoogle Scholar
  38. 38.
    Kruegel J, Rubel D, Gross O (2013) Alport syndrome–insights from basic and clinical research. Nat Rev Nephrol 9:170–178CrossRefGoogle Scholar
  39. 39.
    Awodele O, Oreagba IA, Odoma S, da Silva JA, Osunkalu VO (2012) Toxicological evaluation of the aqueous leaf extract of Moringa oleifera Lam (Moringaceae). J Ethnopharmacol 139(2):330–336CrossRefGoogle Scholar
  40. 40.
    El Sohaimy SA, Hamad GM, Mohamed SE, Amar MH, Al-Hindi RR (2015) Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Glob Adv Res J Agric Sci 4:188–199Google Scholar
  41. 41.
    Zhao J, Li N, Wangy S, Zhaoy X, Wangy J, Yan J, Ruan J (2010) The mechanism of oxidative damage in the nephrotoxicity of mice caused by nano-anatase TiO2. J Exp Nanosci 5(5):447–462CrossRefGoogle Scholar
  42. 42.
    Srivastava A, Shivanandappa T (2010) Hepatoprotective effect of the root extract of Decalepis hamiltonii against carbon tetrachloride-induced oxidative stress in rats. Food Chem 118:411–417CrossRefGoogle Scholar
  43. 43.
    Oyagbemi AA, Omobowale TO, Azeez IO, Abiola JO, Adedokun RA, Nottidge HO (2013) Toxicological evaluations of methanolic extract of Moringa oleifera leaves in liver and kidney of male Wistar rats. Basic Clin Physiol Pharmacol 24(4):307–312.  https://doi.org/10.1515/jbcpp-2012-0061 CrossRefGoogle Scholar
  44. 44.
    Fakurazi S, Sharifudin SA, Arulselvan P (2012) Moringa oleifera hydroethanolic extracts effectively alleviate acetaminophen-induced hepatotoxicity in experimental rats through their antioxidant nature. Molecules 17(7):8334–8350CrossRefGoogle Scholar
  45. 45.
    Cheng Q, Kalabus JL, Zhang J, Blanco JG (2012) A conserved antioxidant response element (ARE) in the promoter of human carbonyl reductase 3 (CBR3) mediates induction by the master redox switch Nrf2. Biochem Pharmacol 83:139–148CrossRefGoogle Scholar
  46. 46.
    Jovanović B, Guzmán HM (2014) Effects of titanium dioxide (TiO2) nanoparticles on caribbean reef-building coral (Montastraea faveolata). Environ Toxicol Chem 33(6):1346–1353CrossRefGoogle Scholar
  47. 47.
    Chen M, Gu H, Ye Y, Lin B, Sun L, Deng W, Zhang J (2010) Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem Toxicol 48:2980–2987CrossRefGoogle Scholar
  48. 48.
    Liu HT, Ma LL, Liu J, Zhao JF, Yan JY, Hong FS (2010) Toxicity of nano-anatase TiO2 to mice: liver injury, oxidative stress. Toxicol Environ Chem 92:175–186CrossRefGoogle Scholar
  49. 49.
    Prasanna V, Sreelatha S (2014) Synergistic effect of Moringa oleifera attenuates oxidative stress induced apoptosis in Saccharomyces cerevisiae cells: evidence for anticancer potential. Int J Pharm Bio Sci 5(2):167–177Google Scholar
  50. 50.
    Qiao X, Wang L, Wang Y, Su K, Qiao Y, Fan Y, Peng Z (2017) Intermedin attenuates renal fibrosis by induction of heme oxygenase-1 in rats with unilateral ureteral obstruction. BMC Nephrol 18:232.  https://doi.org/10.1186/s12882-017-0659-6 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fartkhooni FM, Noori A, Mohammadi A (2016) Effects of titanium dioxide nanoparticles toxicity on the kidney of male rats. Int J Life Sci 10(1):65–69CrossRefGoogle Scholar
  52. 52.
    Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Valamina IE, Makeyev OH (2014) Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci 15:12379–12406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Toxicology and Forensic Medicine, Faculty of Veterinary MedicineBeni-Suef UniversityBeni-SuefEgypt
  2. 2.Genetic & Molecular Biology, Zoology Department, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  3. 3.Department of Pathology, Faculty of Veterinary MedicineBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations