Biological Trace Element Research

, Volume 187, Issue 1, pp 22–31 | Cite as

Analysis of the Relationship Between Hemorheologic Parameters, Aluminum, Manganese, and Selenium in Smokers

  • Fatma Ates Alkan
  • Denizhan Karis
  • Gulfidan Cakmak
  • Alev Meltem Ercan


Smoking is a significant risk factor in fatal pathologies including cardio-cerebrovascular and respiratory diseases. Aluminum (Al) is a toxic element without known biological function, but with recognized toxic effects. Manganese (Mn) and selenium (Se) are essential trace elements involved in cellular antioxidant defense mechanisms. Al, Mn, and Se carry out their metabolic activities via blood flow and tissue oxygenation. The structure and number of red blood cells (RBC) play important role in tissue oxygenation throughout blood flow. Increased hematocrit (Hct) as a result of probable hypoxia induces disturbed blood flow, RBC aggregation (RBC Agg), RBC deformability index (Tk), and oxygen delivery index (ODI). Therefore, we aimed to investigate the effects of altered Al, Mn, and Se levels on number, structure, and function of RBCs (Hct, blood and plasma viscosity (BV and PV, respectively), RBC Agg, Tk, ODI) in smokers without diagnosis of chronic obstructive pulmonary disease (COPD) in a study group (n = 128) categorized as ex-smokers (ES), smokers (S), and healthy controls (HC). Elements were analyzed in serum using ICP-OES. BV and PV were measured via Brookfield and Harkness viscometers at 37 °C, respectively. Smokers had statistically higher serum Al and Mn levels, BV, RBC, Hgb, Hct, PV, fibrinogen, RBC Agg, Tk45, and pulmonary blood flow rate, but lower serum Se levels and ODI45 values versus HC. In conclusion, increased Al, Mn, and hemorheological parameters and decreased Se and ODI45 might result from inflammatory response in defense mechanism in smokers without diagnosis of COPD. Our results point out that serum Al, Mn, and Se with hemorheological parameters may be beneficial markers of tissue oxygenation and defense mechanism before the clinic onset of COPD in smokers.


Aluminum Manganese Selenium Hemorheological parameters Smoking Respiratory function 


Funding Information

The present work was supported by the Research Fund of Istanbul University (identification number: 15364). This study was partly presented at 6th World Congress of Oxidative Stress, Calcium Signaling and TRP Channel as an oral presentation - Journal of Cellular Neuroscience and Oxidative Stress, 6th World Congress of Oxidative Stress, Calcium Signaling and TRP Channels, Isparta, Turkey, 24–27 May 2016, Oral Presentations (Abstract Book; OP-3, pp. 48).

Compliance with Ethical Standards

This study was planned under the guidance and approval of the Ethical Committee at Cerrahpasa Medical Faculty of Istanbul University. The study was performed in accordance with the Helsinki Declaration, and written informed consent was obtained from all individuals prior to their admitting in the study.


  1. 1.
    World Health Organization WHO (1996) Guidelines for controlling and monitoring the tobacco epidemic. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Almarshad HA, Hassan FM (2016) Alterations in blood coagulation and viscosity among young male cigarette smokers of Al-Jouf region in Saudi Arabia. Clin Appl Thromb Hemost 22:386–389. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Uz E, Sahin S, Hepsen IF, Var A, Sogut S, Akyol O (2003) The relationship between serum trace element changes and visual function in heavy smokers. Acta Opthalmol Scand 81:161–164CrossRefGoogle Scholar
  4. 4.
    Choudhury G, Rabinovich R, Macnee W (2014) Comorbidities and systemic effects of chronic obstructive pulmonary disease. Clin Chest Med 35(1):101–130. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ergun DD, Karıs D, Alkan FA et al (2016) Effects of cigarette smoking on hemorheologic parameters, plasma osmolality and lung function. Clin Hemoheol Microcirc 63:313–324. CrossRefGoogle Scholar
  6. 6.
    WHO (2002) The World Health Report 2002—reducing risks, promoting healthy life. WHO, GenevaGoogle Scholar
  7. 7.
    Massadeh AM, Alali FQ, Jaradat QM (2005) Determination of lead and cadmium in different brands of cigarettes in Jordan. Environ Monit Assess 104:163–170CrossRefGoogle Scholar
  8. 8.
    Yung MC, Thornton I, Chon HT (1998) Arsenic, cadmium, copper, lead, and zinc concentrations in cigarettes produced in Korea and the United Kingdom. Environ Technol 19(2):237–241CrossRefGoogle Scholar
  9. 9.
    Meral I, Akdemir FNE (2012) Serum mineral status of long-term cigarette smokers. Toxicol Ind Health 31(1):92–96. CrossRefGoogle Scholar
  10. 10.
    Layrisse M, Martinez-Torres C, Mendez-Castellano H et al (1988) Requirements of nutrients which participate in erythropoiesis. Arch Latinoam Nutr 38(3):622–646PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sebastian A, Harris ST, Ottoway JH et al (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. New Eng J Med 330(25):1776–1781. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Speich M, Pineau A, Ballereau F (2001) Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta 312(1–2):1–11. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Phys 275:H301–H321Google Scholar
  14. 14.
    Meral I, Hembrough FB, Bailey TB, Hsu W (2002) Functional changes in isolated guinea-pig papillary muscle induced by monensin and digoxin. J Vet Med A Physiol Pathol Clin Med 49(1):51–56CrossRefGoogle Scholar
  15. 15.
    Baron R (2003) General principles of bone biology. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 5th edn. American Society for Bone and Mineral Research, Washington, DCGoogle Scholar
  16. 16.
    Katz SH, Foulks EF (1970) Mineral metabolism and behavior: abnormalities of calcium homeostasis. Am J Phys Anthropol 32(2):299–304. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Alkan FA (2014) The investigation of the effect of different hemofiltration models on trace elements in acute renal failure patients. Dissertation, Istanbul University, Institute of Health Science, Cerrahpasa Medical Faculty, Department of BiophysicsGoogle Scholar
  18. 18.
    Bocca B, Madeddu R, Asara Y, Tolu P, Marchal JA, Forte G (2011) Assessment of reference ranges for blood Cu, Mn, Se and Zn in selected Italian population. J Trace Elem Med Biol 25:19–26. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kocyigit A, Erel O, Gur S (2001) Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities. Clin Biochem 34:629–633. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bazzoni GB, Bollini AN, Hernandez GN et al (2005) In vivo effect of aluminium upon the physical properties of the erythrocyte membrane. J Inorg Biochem 99(3):822–827. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Winiarczyk AU, Kalkowska KG, Szubartowska E (2009) Aluminium, cadmium and lead concentration in the hair of tobacco smokers. Biol Trace Elem Res 132:41–50. CrossRefGoogle Scholar
  22. 22.
    Turgut S, Melek Bor-Kucukatay M, Emmungil G et al (2007) The effects of low dose aluminum on hemorheological and hematological parameters in rats. Arch Toxicol 81:11–17. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ozturk B, Ozdemir S (2015) Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats. Toxicol Ind Health 31(12):1069–1077. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lind PM, Olsen L, Lind L (2012) Circulating levels of metals are related to carotid atherosclerosis in elderly. Sci Total Environ 416:80–88CrossRefGoogle Scholar
  25. 25.
    Soldin OP, Aschner M (2007) Effects of manganese on thyroid hormone homeostasis. Neurotoxicology 28(5):951–956. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jain RB, Choi YS (2015) Normal reference ranges for and variability in the levels of blood manganese and selenium by gender, age, and race/ethnicity for general U.S. population. J Trace Elem Med Biol 30:142–152. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim YJ, Kim YK, Kho HS (2010) Effects of smoking on trace metal levels in saliva. Oral Dis 16:823–830. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Salmonowicz B, Korpacka MK, Noczynska A (2014) Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. Adv Clin Exp Med 23(2):259–268CrossRefGoogle Scholar
  29. 29.
    Meltzer HM, Bransaeter AL, Iuhnsen BB et al (2010) Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norweign women in the HUNT 2 study. Environ Res 110:497–504. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pop GA, Chang ZY, Slager CJ, Kooij BJ, van Deel ED, Moraru L, Quak J, Meijer GC, Duncker DJ (2004) Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine. Biosens Bioelectron 19(12):1685–1693. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Alkan FA, Cakmak G, Karıs D et al (2014) The evaluation of plasma viscosity and endothelial dysfunction in smoking individuals. Clin Hemoheol and Microcirc 58:403–413. CrossRefGoogle Scholar
  32. 32.
    Asif M, Karim S, Umar Z, Malik A, Ismail T, Chaudhary A, Alqahtani MH, Rasool M (2013) Effect of cigarette smoking based on hematological parameters: comparison between male smokers and nonsmokers. Turk J Biochem 38(1):75–80. CrossRefGoogle Scholar
  33. 33.
    Bilto YY (2013) Effects of cigarette smoking on blood rheology and biochemistry. IJSR 4(3):107–112Google Scholar
  34. 34.
    Lakshmi SA, Lakshmanan A, Kumar GP, Saravanan A (2014) Effect of intensity of cigarette smoking on haematological and lipid parameters. J Clin Diagn Res 8(7):BC11–BC13. CrossRefGoogle Scholar
  35. 35.
    Shimada S, Hasegawa K, Wada H, Terashima S, Satoh-Asahara N, Yamakage H, Kitaoka S, Akao M, Shimatsu A, Takahashi Y (2011) High blood viscosity is closely associated with cigarette smoking and markedly reduced by smoking cessation. Circ J 75:185–189CrossRefGoogle Scholar
  36. 36.
    Kalhoff H (2003) Mild dehydration: a risk factor of broncho-pulmonary disorders? Eur J Clin Nutr 57(2):81–87. CrossRefGoogle Scholar
  37. 37.
    Bowers AS, Pepple DJ, Reid HL (2008) Oxygen delivery index in subjects with normal haemoglobin (HbAA), sickle cell trait (HbAS) and homozygous sickle cell disease (HbSS). Clin Hemorheol Microcirc 40:303–309. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cay M, Naziroglu M, Koylu H (2009) Selenium and vitamin E modulates cigarette smoke exposure-induced oxidative stress in blood of rats. Biol Trace Elem Res 131:62–70. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Haustein KO, Krause J, Haustein H, Rasmussen T, Cort N (2002) Effects of cigarette smoking or nicotine replacement on cardiovascular risk factors and parameters of haemorheology. J Intern Med 252(2):130–139CrossRefGoogle Scholar
  40. 40.
    Ozorak A, Nazıroglu M, Celik O et al (2013) Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res 156:221–229. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Matrai A, Wittingham RB, Ernst E (1987) A simple method of estimating whole blood viscosity at standardized hemotocrit. Clin Hemorheol Microcirc 7:261. CrossRefGoogle Scholar
  42. 42.
    Wells Jr RE, Denton D, Melvill E (1961) Measurement of viscosity of biologic fluids by cone-plate viscometer. J Lab Clin Med 57:646Google Scholar
  43. 43.
    Baskurt OK, Boynard M, Cokelet GC, International Expert Panel for Standardization of Hemorheological Methods et al (2009) New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc 42(2):75–97. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Quemada D (1981) A rheological model for studying the hematocrit dependence of red cell–red cell and red cell–protein interactions in blood. Biorheology 18:501–516.".
  45. 45.
    Landsberger S, Wu D (1995) The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton supression neutron activation analysis. Sci Total Environ 173/174:323–337. CrossRefGoogle Scholar
  46. 46.
    Afridi HI, Talpur FN, Kazi TG, Brabazon D (2015) Estimation of toxic elements in the samples of different cigarettes and their effect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers. Environ Monit Assess 187(157):1–16. CrossRefGoogle Scholar
  47. 47.
    Ercan M, Firtina S, Konukoglu D (2014) Comparison of plasma viscosity as a marker of endothelial dysfunction with nitric oxide and asymmetric dimethylarginine in subjects with dyslipidemia. Clin Hemorheol Microcirc 57(4):315–323. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chattopadhyay K, Chattopadhyay BD (2008) Effect of nicotine on lipid profile, peroxidation and antioxidant enzymes in female rats with restricted dietary protein. Indian J Med Res 127(6):571–576PubMedPubMedCentralGoogle Scholar
  49. 49.
    Safaa Elserougy S, Abdallah HM, Hafez SF, Beshir S (2015) Impact of aluminum exposure on lung. Toxicol Ind Health 31(1):73–78. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Exley C, Begum A, Wolley MP, Bloor RN (2006) Aluminum in tobacco and cannibas and smoking-related disease. Am J Med 119:276.e9–276.e11CrossRefGoogle Scholar
  51. 51.
    Ehrly AM, Schrimpf WJ (1978) Der einflu B des “akuten” ziyaretten-raucens auf die verfornbarkeit von erythrozen. Herl Kreislauf 10:245–246Google Scholar
  52. 52.
    Lowe GDO, Drummond MM, Forbes CD, Barbenel JC (1980) The effects of age and cigarette-smoking on blood and plasma viscosity in men. Scott Med J 25:13–17. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Van Rensburg SJ, Carstens ME, Potocnik FC et al (1992) Membrane fluidity of platelets and erythrocytes in patients with Alzheimer’s disease and the effect of small amounts of aluminium on platelet and erythrocyte membranes. Neurochem Res 17(8):825–829CrossRefGoogle Scholar
  54. 54.
    Kim Y, Lee B-K (2011) Iron deficiency increases blood manganese level in the Korean general population according to KNHANES 2008. Neurotoxicology 32:247–254. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rivera-Mancía S, Colín-Ramírez E, Montes S, Cartas-Rosado R, Vargas-Barrón J, Vallejo M (2017) Dyslipidemia and tobacco smoking synergistically increase serum manganese. Investig Clin 58(3):238–249Google Scholar
  56. 56.
    Enderle MD, Pfohl M, Kellermann N et al (2000) Endothelial function, variables of fibrinolysis and coagulation in smokers and healthy controls. Hemostasis 30:149–158Google Scholar
  57. 57.
    Meiselman HJ, Neu B, Rampling MW, Baskurt OK (2007) RBC aggregation: laboratory data and models. Indian J Exp Biol 45:9–17PubMedPubMedCentralGoogle Scholar
  58. 58.
    Letsiou S, Nomikos T, Panagiotakos D, Pergantis SA, Fragopoulou E, Antonopoulou S, Pitsavos C, Stefanadis C (2009) Serum total selenium status in Greek adults and its relation to age. The ATTICA study cohort. Biol Trace Elem Res 128:8–17. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Arnauda J, Akbaralyc NT, Hininger I et al (2007) Factors associated with longitudinal plasma selenium decline in the elderly: the EVA StudyB. J Nutr Biochem 18:482–487CrossRefGoogle Scholar
  60. 60.
    Chen Y, Hall M, Grazino JH et al (2007) A prospective study of blood selenium levels and risk of arsenic-related premalignant skin lesions. Cancer Epidemiol Biomark Prev 16:207–213. CrossRefGoogle Scholar
  61. 61.
    Massadeh A, Gharibeh A, Omari K, al-Momani I, Alomari A, Tumah H, Hayajneh W (2010) Simultaneous determination of Cd, Pb, Cu, Zn, and Se in human blood of Jordanian smokers by ICP-OES. Biol Trace Elem Res 133:1–11. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Preston AM (1991) Cigarette smoking nutritional implication. Prog Food Nutr Sci 15(4):183–217PubMedPubMedCentralGoogle Scholar
  63. 63.
    Smith CJ, Fischer TH (2001) Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction. Atherosclerosis 158:257–267CrossRefGoogle Scholar
  64. 64.
    Vankatesan N, Punithavathi D, Babu M (2007) Protection from acute and chronic lung diseases by curcumin. Adv Exp Med Biol 595:379–405. CrossRefGoogle Scholar
  65. 65.
    Varon J, Marik PE, Fromm RE, Gueler A (1999) Carbon monoxide poisoning: a review for clinicians. J Emerg Med 17(1):87–93. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fatma Ates Alkan
    • 1
  • Denizhan Karis
    • 1
  • Gulfidan Cakmak
    • 2
  • Alev Meltem Ercan
    • 1
  1. 1.Department of Biophysics, Cerrahpasa Medical FacultyIstanbul UniversityFatih/IstanbulTurkey
  2. 2.Department of Respiratory MedicineHaseki Education and Research HospitalIstanbulTurkey

Personalised recommendations