Biological Trace Element Research

, Volume 186, Issue 2, pp 407–412 | Cite as

Zinc and Insulin Resistance: Biochemical and Molecular Aspects

  • Kyria Jayanne Clímaco Cruz
  • Ana Raquel Soares de Oliveira
  • Jennifer Beatriz Silva Morais
  • Juliana Soares Severo
  • Priscyla Maria Vieira Mendes
  • Stéfany Rodrigues de Sousa Melo
  • Gustavo Santos de Sousa
  • Dilina do Nascimento MarreiroEmail author


Studies have shown the participation of minerals in mechanisms involved in the pathogenesis of insulin resistance. Zinc, in particular, seems to play an important role in the secretion and action of this hormone. Therefore, the aim of this review is to understand the role of zinc in increasing insulin sensitivity. We conducted a search of articles published in the PubMed and ScienceDirect database selected from March 2016 to February 2018, using the keywords “zinc,” “insulin,” “insulin resistance,” “insulin sensitivity,” and “supplementation.” Following the eligibility criteria were selected 53 articles. The scientific evidences presented in this review show the importance of zinc and their carrier proteins in the synthesis and secretion of insulin, as well as in the signaling pathway of action of this hormone. Zinc deficiency is associated with glucose intolerance and insulin resistance; however, the effectiveness of the intervention with the zinc supplementation is still inconclusive.


Zinc Insulin resistance Insulin sensitivity Insulin secretion Supplementation 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abruzzese GA, Cerrrone GE, Gamez JM, Graffigna MN, Belli S, Lioy G, Mormandi E, Otero P, Levalle O, Motta A (2016) Lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of insulin resistance and metabolic associated disturbances in young argentine women with polycystic ovary syndrome. Horm Metab Res 49:23–29. CrossRefPubMedGoogle Scholar
  2. 2.
    Andrade GC, Fujise LH, Filho SJE, Oliveira F, Silva RC (2016) Non-alcoholic fatty liver disease (NAFLD) in different populations: a clinical and epidemiological study–sample of São José do Rio Preto. Rev Assoc Med Bras 62:2018–2226Google Scholar
  3. 3.
    Araújo AJ, Santos AC, Prado WL (2016) Body composition of obese adolescents: association between adiposity indicators and cardiometabolic risk factors. J Hum Nutr Diet 30:193–202. CrossRefPubMedGoogle Scholar
  4. 4.
    Jha S, Panda M, Kumar S, Gupta R, Neemani A, Jacob J, Thomas NM, James A, Waghdhare S, Agarwal G (2015) Psychological insulin resistance in patients with type 2 diabetes. J Assoc Physicians India 63:33–39PubMedGoogle Scholar
  5. 5.
    Le TN, Celi F, Wickham EP (2016) Thyroid stimulating hormone levels are associated with cardiometabolic risk factors in euthyroid adolescents. Thyroid 26:1441–1449. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Otsuki M, Kitamura T, Tamada D, Tabuchi Y, Mukai K, Morita S, Kasayama S, Shimomura I, Koga M (2016) Incompatibility between fasting and postprandial plasma glucose in patients with Cushing’s syndrome. Endocr J 63:1017–1023. CrossRefPubMedGoogle Scholar
  7. 7.
    Tatsch E, De Carvalho JA, Hausen BS, Bollick YS, Torbitz VD, Duarte T et al (2015) Oxidative DNA damage is associated with inflammatory response, insulin resistance and microvascular complications in type 2 diabetes. Mutat Res 782:17–22CrossRefGoogle Scholar
  8. 8.
    Kelishadi R, Hashemipour M, Adeli K, Tavakoli N, Movahedian-Attar A, Shapouri J, Poursafa P, Rouzbahani A (2010) Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord 8:505–510CrossRefGoogle Scholar
  9. 9.
    Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR (2015) Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru 23:44CrossRefGoogle Scholar
  10. 10.
    Vardatsikos G, Pandey NR, Srivastava AK (2013) Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem 120:8–17CrossRefGoogle Scholar
  11. 11.
    Oyedeji SO, Adesina AA, Oke OT, Tijani YO (2014) Evaluation of essential trace metals in female type 2 diabetes mellitus patients in Nigerian population. Afr J Biotechnol 13:1910–1914CrossRefGoogle Scholar
  12. 12.
    Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K (2014) Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. BMC. Res. Notes 7: 1–12CrossRefGoogle Scholar
  13. 13.
    Cruz KJC, Morais JBS, Oliveira ARS, Severo JS, Marreiro DN (2017) The effect of zinc supplementation on insulin resistance in obese subjects: a systematic review. Biol Trace Elem Res 176:239–243CrossRefGoogle Scholar
  14. 14.
    Bandeira VDS, Pires LV, Hashimoto LL, Alencar LL, Almondes KGS, Lottenberg AS et al (2017) Association of reduced zinc status with poor glycemic control in individuals with type 2 diabetes mellitus. J Trace Elem Med Biol 44:132–136CrossRefGoogle Scholar
  15. 15.
    Cooper-Capetini V, Vasconcelos DAA, Martins AR, Hirabara SM, Donato Jr. J, Carpinelli AR et al (2017) Zinc supplementation improves glucose homeostasis in high fat-fed mice by enhancing pancreatic-cell function Nutrients 9(10): 1150Google Scholar
  16. 16.
    Ho M, Heath AM, Gow M, Baur LA, Cowell CT, Samman S et al (2016) Zinc intake, zinc bioavailability and plasma zinc in obese adolescents with clinical insulin resistance following low energy diets. Ann Nutr Metab 69(2):135–141CrossRefGoogle Scholar
  17. 17.
    Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi RLDK, Constantine GR, Katulanda P (2012) Effect of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 4:13CrossRefGoogle Scholar
  18. 18.
    Chimienti F (2013) Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 26:1–11CrossRefGoogle Scholar
  19. 19.
    Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine 45:178–189CrossRefGoogle Scholar
  20. 20.
    Myers SA (2015) Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015:167503CrossRefGoogle Scholar
  21. 21.
    Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71:3281–3295CrossRefGoogle Scholar
  22. 22.
    Cai Y, Kirschke CP, Huang L (2018) SLC30A family expression in the pancreatic islets of humans and mice: cellular localization in the β-cells. J Mol Histol 2018:25Google Scholar
  23. 23.
    Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668CrossRefGoogle Scholar
  24. 24.
    Davidson HW, Wenzlau JM, O'Brien RM (2014) Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab 25:415–424CrossRefGoogle Scholar
  25. 25.
    Foster M, Chu A, Petocz P, Samman S (2014) Zinc transporter gene expression and glycemic control in post-menopausal women with type 2 diabetes mellitus. J Trace Elem Med Biol 28:448–452CrossRefGoogle Scholar
  26. 26.
    Lefebvre B, Vandewalle B, Balavoine AS, Queniat G, Moerman E, Vantyghem MC, le Bacquer O, Gmyr V, Pawlowski V, Kerr-Conte J, Pattou F (2012) Regulation and functional effects of ZNT8 in human pancreatic islets. J Endocrinol 214:225–232CrossRefGoogle Scholar
  27. 27.
    Fukunaka A, Suzuki T, Kurokawa Y, Yamazaki T, Fujiwara N, Ishihara K, Migaki H, Okumura K, Masuda S, Yamaguchi-Iwai Y, Nagao M, Kambe T (2009) Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem 284:30798–30806CrossRefGoogle Scholar
  28. 28.
    Huang L, Yan M, Kirschke CP (2010) Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp Cell Res 316:2630–2634CrossRefGoogle Scholar
  29. 29.
    Smidt K, Jessen N, Petersen AB, Larsen A, Magnusson N, Jeppesen JB, Stoltenberg M, Culvenor JG, Tsatsanis A, Brock B, Schmitz O, Wogensen L, Bush AI, Rungby J (2009) SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4:e5684CrossRefGoogle Scholar
  30. 30.
    Gyulkhandanyan AV, Lu H, Lee SC, Bhattacharjee A, Wijesekara N, Fox JE et al (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J Biol Chem 283:10184–10197CrossRefGoogle Scholar
  31. 31.
    Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372CrossRefGoogle Scholar
  32. 32.
    Lichten LA, Ryu MS, Guo L, Embury J, Cousins RJ (2011) MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction. PLoS One 6:e21526CrossRefGoogle Scholar
  33. 33.
    Huang L (2014) Zinc and its transporters, pancreatic β-cells, and insulin metabolism. Vitam Horm 95:365–390CrossRefGoogle Scholar
  34. 34.
    Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet β-cells. J Biol Chem 286:25778–25789CrossRefGoogle Scholar
  35. 35.
    Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB (2015) Characterization of zinc influx transporters (ZIPs) in pancreatic cells. J Biol Chem 290:18757–18769CrossRefGoogle Scholar
  36. 36.
    Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27:137–142CrossRefGoogle Scholar
  37. 37.
    Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L (2012) Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem 23:1458–1466CrossRefGoogle Scholar
  38. 38.
    Bellomo E, Massarotti A, Hogstrand C, Maret W (2014) Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6:1229–1239CrossRefGoogle Scholar
  39. 39.
    Jansen J, Karges W, Rink L (2009) Zinc and diabetes—clinical links and molecular mechanisms. J Nutr Biochem 20:399–417CrossRefGoogle Scholar
  40. 40.
    Walter PL, Kampkötter A, Eckers A, Barthel A, Schmoll D, Sies H, Klotz LO (2006) Modulation of FoxO signaling in human hepatoma cells by exposure to copper or zinc ions. Arch Biochem Biophys 454:107–113CrossRefGoogle Scholar
  41. 41.
    Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, Liu Y, Wang Y, Sun Z (2016) Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-GLUT4, GSK3β and mTOR-S6K1. J Nutr Biochem 34:126–135CrossRefGoogle Scholar
  42. 42.
    Buchner DA, Charrier A, Srinivasan E, Wang L, Paulsen MT, Ljungman M, Bridges D, Saltiel AR (2015) Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem 290:6376–6386CrossRefGoogle Scholar
  43. 43.
    Huang L, Kirschke CP, Lay YA, Levy LB, Lamirande DE, Zhang PH (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 287:33883–33896CrossRefGoogle Scholar
  44. 44.
    Tepaamorndech S, Kirschke CP, Pedersen TL, Keyes WR, Newman JW, Huang L (2016) Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake. FEBS J 283:378–394CrossRefGoogle Scholar
  45. 45.
    Myers SA, Nield A, Chew GS, Myers MA (2013) The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. PLoS One 8:e79316CrossRefGoogle Scholar
  46. 46.
    Aydemir TB, Chang SM, Guthrie GJ, Maki AB, Ryu MS, Karabiyik A et al (2012) Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One 7:e48679CrossRefGoogle Scholar
  47. 47.
    Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci 102:6843–6848CrossRefGoogle Scholar
  48. 48.
    Aydemir TB, Troche C, Kim MH, Cousins RJ (2016) Hepatic ZIP14-mediated zinc transport contributes to endosomal insulin receptor trafficking and glucose metabolism. J Biol Chem 291(46):23939–23951CrossRefGoogle Scholar
  49. 49.
    Ranasinghe P, Wathurapatha WS, Galappatthy P, Katulanda P, Jayawardena R, Constantine GR (2017) Zinc supplementation in pre-diabetics: a randomized double-blind placebo-controlled clinical trial. J Diabetes. CrossRefGoogle Scholar
  50. 50.
    Islam MR, Attia J, Ali L, McEvoy M, Selim S, Sibbritt D, Akhter A, Akter S, Peel R, Faruque O, Mona T, Lona H, Milton AH (2016) Zinc supplementation for improving glucose handling in pre-diabetes: a double blind randomized placebo controlled pilot study. Diabetes Res Clin Pract 115:39–46CrossRefGoogle Scholar
  51. 51.
    Payahoo L, Ostadrahimi A, Mobasseri M, Bishak YH, Jafarabadi MA (2014) Effect of zinc supplementation on serum leptin level and insulin sensitivity in obese people. Trace Elem Electroly 31(1/2014):27–32Google Scholar
  52. 52.
    Payahoo L, Ostadrahimi A, Mobasseri M, Bishak YH, Farrin N, Jafarabadi MA, Mahluji S (2013) Effect of zinc supplementation on the anthropometric measurements, lipid profiles and fasting blood glucose in the healthy obese adults. Adv Pharm Bull 3(1):161–165PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim J, Lee S (2012) Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Nutr Res Pract 6:221–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kyria Jayanne Clímaco Cruz
    • 1
  • Ana Raquel Soares de Oliveira
    • 1
  • Jennifer Beatriz Silva Morais
    • 1
  • Juliana Soares Severo
    • 1
  • Priscyla Maria Vieira Mendes
    • 1
  • Stéfany Rodrigues de Sousa Melo
    • 1
  • Gustavo Santos de Sousa
    • 2
  • Dilina do Nascimento Marreiro
    • 1
    Email author
  1. 1.Department of NutritionFederal University of PiauíTeresinaBrazil
  2. 2.Faculty of Medical SciencesState University of PiauíTeresinaBrazil

Personalised recommendations