Advertisement

Biological Trace Element Research

, Volume 186, Issue 1, pp 52–67 | Cite as

Vanadium in Biosphere and Its Role in Biological Processes

  • Deepika Tripathi
  • Veena Mani
  • Ravi Prakash Pal
Article

Abstract

Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.

Keywords

Metabolic role Insulin-mimetic Biological function Vanadium 

References

  1. 1.
    Malhotra VK (1998) Biochemistry for students. New DelhiGoogle Scholar
  2. 2.
    Eruvbetine D (2003) Canine nutrition and health. A paper presented at the seminar organized by Kensington Pharmaceuticals Nig. Ltd., LagosGoogle Scholar
  3. 3.
    Murray RK, Granner DK, Mayes PA, Rodwell VW (2000) Harper’s biochemistry. McGraw-Hill, Health Profession DivisionGoogle Scholar
  4. 4.
    Underwood EJ, Suttle NF (2010) The mineral nutrition of livestock. CABI, New YorkGoogle Scholar
  5. 5.
    Nielsen FH (1998) Ultratrace elements in nutrition: current knowledge and speculation. J Trace Elem Exp Med 11:2.  https://doi.org/10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q CrossRefGoogle Scholar
  6. 6.
    Verma S, Cam MC, McNeil JH (1998) Nutritional factors that can favorably influence the glucose/insulin system: vanadium. J Am Coll Nutr 17(1):11–18.  https://doi.org/10.1080/07315724.1998.10718730 CrossRefPubMedGoogle Scholar
  7. 7.
    Moskalyk RR, Alfanti AM (2003) Processing of vanadium: a review. Miner Eng 16(9):793–805.  https://doi.org/10.1016/S0892-6875(03)00213-9 CrossRefGoogle Scholar
  8. 8.
    Baroch F (2006) Vanadium and vanadium alloys. In: Kirk-Othmer Encyclopedia of Chemical Technology. Willey, New York, pp 1–18.  https://doi.org/10.1002/0471238961.22011401.a01.pub2 CrossRefGoogle Scholar
  9. 9.
    Reul Beaneadicte A, Amin SS, Buchet J-P, Ongemba LN, Crans DC, Brichard SM (1999) Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 126:467–477.  https://doi.org/10.1038/sj.bjp.0702311 CrossRefGoogle Scholar
  10. 10.
    Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M (2004) Vanadium an element of atypical biological significance. Toxicol Lett 150:135–143.  https://doi.org/10.1016/j.toxlet.2004.01.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Badmaev V, Prakash S, Majeed M (1999) Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 5:273–291.  https://doi.org/10.1089/acm.1999.5.273 CrossRefPubMedGoogle Scholar
  12. 12.
    Harland BF, Harland Williams BA (1994) Is vanadium of human nutritional importance yet? J Am Diet Assoc 94(8):891–894.  https://doi.org/10.1016/0002-8223(94)92371-X CrossRefPubMedGoogle Scholar
  13. 13.
    Lide DR (2008) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    NRC (2005) Mineral tolerances of animals. National Academy of Sciences, Washington, DCGoogle Scholar
  15. 15.
    Martin HW, Young TR, Kaplan DI, Simon L, Adriano DC (1996) Evaluation of three herbaceous index plant species for bioavailability of soil cadmium, chromium, nickel and vanadium. Plant Soil 182(2):199–207.  https://doi.org/10.1007/BF00029051 CrossRefGoogle Scholar
  16. 16.
    Vwioko D, Anoliefo G, Fashemi S (2006) Metal concentration in plant tissues of Ricinus communis L.(castor oil) grown in soil contaminated with spent lubricating oil. J Appl Sci Environ Manag (3):10, 127–134.  https://doi.org/10.4314/jasem.v10i3.17331
  17. 17.
    Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition. Boca Raton, LondonCrossRefGoogle Scholar
  18. 18.
    Wang JF, Liu Z (1999) Effect of vanadium on the growth of soybean seedlings. Plant Soil 2016(1):47–51.  https://doi.org/10.1023/A:1004723509113 CrossRefGoogle Scholar
  19. 19.
    EPA (2003) U.S. Environmental Protection Agency. EPA’s report on the environment (2003 draft). U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  20. 20.
    Anke M (2004) Vanadium—an element both essential and toxic to plants, animals and humans. Anal Real Acad Nac Farm 70:961–999Google Scholar
  21. 21.
    Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37(2):265–278CrossRefGoogle Scholar
  22. 22.
    NRC (1980) Mineral tolerance of domestic animals. In: Vanadium. National Academy Press, Washington, D.C, pp. 534–552Google Scholar
  23. 23.
    Myron DR, Givand SH, Nielsen FH (1977) Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy. J Agric Food Chem 25:297–300.  https://doi.org/10.1021/jf60210a036 CrossRefPubMedGoogle Scholar
  24. 24.
    EFSA (2010) Technical report on selected trace and ultratrace elements: biological role, content in feed and requirements in animal nutrition—elements for risk assessmentGoogle Scholar
  25. 25.
    Berry RE, Armstrong EM, Beddoes RL, Collison D, Ertok SN, Helliwell M, Garner CD (1999) The structural characterization of amavadin. Angew Chem Int Ed 38(6):795–797.  https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<795::AID-ANIE795>3.0.CO;2-7 CrossRefGoogle Scholar
  26. 26.
    Hubregtse T, Neeleman E, Maschmeyer T, Sheldon RA, Hanefeld U, Arends JWCE (2005) The first enantioselective synthesis of the amavidin ligand and its complexation to vanadium. J Inorg Biochem 99(5):1264–1267.  https://doi.org/10.1016/j.jinorgbio.2005.02.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Waters MD (1977) Toxicology of vanadium. In: Goyer RA, Mehlman MA (eds) Advances in modern toxicology. Toxicology of trace elements, Wiley, New York, pp 147–189Google Scholar
  28. 28.
    WHO (World Health Organization) (2001) Vanadium pentoxide and other inorganic vanadium compounds. Concise International Chemical Assessment Document 29. Geneva: WHO. http:// www.inchem.org/documents/cicads/cicads/cicad29.htm. Accessed April 22, 2005
  29. 29.
    US Department of Energy (1999) Final site observational work plan for the UMTRA project old rifle site GJO–99–88–TAR. U.S. Department of Energy, Grand JunctionGoogle Scholar
  30. 30.
    WHO (World Health Organization) (1988) Vanadium. In: Environmental Health Criteria 81. Geneva, pp 1–170Google Scholar
  31. 31.
    Nielson FH, Uthus EO (1990) Vanadium in biological systems. In: Chasteen ND (ed) Physiology and biochemistry. Kluwer Academic, London, pp 51–56Google Scholar
  32. 32.
    Clark TA, Deniset JF, Heyliger CE, Pierce GN (2013) Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Fail Rev.  https://doi.org/10.1007/s10741-013-9380-0 CrossRefGoogle Scholar
  33. 33.
    Vilter H (1984) Peroxidases from Phaephyceae: vanadium (V)-dependent peroxidase from Asocphyllum nodosum. Phytochemistry 23: 1387-1390.  https://doi.org/10.1016/S0031-9422(00)80471-9CrossRefGoogle Scholar
  34. 34.
    Cusi K, Cukier S, Defronzo RA, Torres M, Puchulu FM, Redondo JC (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocriol Metab 86:1410–1417Google Scholar
  35. 35.
    Guo J, Han C, Liu Y (2010) A contemporary treatment approach to both diabetes and depression by cordyceps sinensis, rich in vanadium. Evid Based Complement Alternat Med 7(3):387–389.  https://doi.org/10.1210/jcem.86.3.7337 CrossRefPubMedGoogle Scholar
  36. 36.
    Samanta S, Swamy V, Suresh D, Rajkumar M, Rana B, Rana A, Chatterjee M (2008) Protective effects of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon: removal of O (6)-methylguanine DNA adducts, p53 expression, inducible nitric oxide synthase downregulation and apoptotic induction. Mutat Res 650(2):123–131.  https://doi.org/10.1016/j.mrgentox.2007.11.001 CrossRefPubMedGoogle Scholar
  37. 37.
    Crans DC, Mahroof-Tahir M, Johnson MD, Wilkins PC, Yang L, Robbins K, Johnson A, Alfano JA, Godzala ME (2003) Vanadium (IV) and vanadium (V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties and effects in rats with STZ-induced diabetes. Inorg Chim Acta 356:365–378.  https://doi.org/10.1016/S0020-1693(03)00430-4 CrossRefGoogle Scholar
  38. 38.
    Kreider RB (1999) Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med 27(2):97–110.  https://doi.org/10.2165/00007256-199927020-00003 CrossRefPubMedGoogle Scholar
  39. 39.
    Aureliano M, Ohlin CA (2014) Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 137:123–130.  https://doi.org/10.1016/j.jinorgbio CrossRefPubMedGoogle Scholar
  40. 40.
    Arnon DL, Wessel G (1953) Vanadium as an essential for green plants. Nature 172:1039–1040.  https://doi.org/10.1038/1721039a0 CrossRefPubMedGoogle Scholar
  41. 41.
    De Boer E, Van Kooyk Y, Tromp MGM, Plat H, Wever R (1986) Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as prosthetic group. Biochem Biophys Acta 869:48–53.  https://doi.org/10.1016/0167-4838(86)90308-0 CrossRefGoogle Scholar
  42. 42.
    Nielsen FH (1996) How should dietary guidance be given for mineral elements with beneficial actions or suspect of being essential? J Nutr 126:2377S–2385SCrossRefGoogle Scholar
  43. 43.
    Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JAL, Fraústo da Silva JJR, Wever R (2001) Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry 57:633–642.  https://doi.org/10.1016/S0031-9422(01)00094-2 CrossRefPubMedGoogle Scholar
  44. 44.
    Rehder D (2014) Vanadium. Its role for humans. In: Sigel A, Sigel H, Sigel RKO (eds) Interrelations between essential metal ions and human diseases. Metal ions in life sciences. Springer, pp 139–169.  https://doi.org/10.1007/978-94-007-7500-8_5 Google Scholar
  45. 45.
    Antipov AN, Dimitry YS, Nikolay PL, Kuenen JG (2003) New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochem J 369(1):185–189.  https://doi.org/10.1042/bj20021193 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Krosniak M, Francik R, Kołodziejczyk K, Wojtanowska-Krosniak A, Tedeschi C, Petrone V, Grybos R (2014) Investigation of the influence of vanadium compounds treatment in NZO mice model—preliminary study. Acta Pol Pharm 71(2):271–278PubMedGoogle Scholar
  47. 47.
    Hopkins LL Jr, Mohr HE (1971) The biological essentiality of vanadium. In: Newer trace elements in nutrition. Marcel, New York, pp 195–213Google Scholar
  48. 48.
    Hays VW, Swenson MJ (1985) Minerals and bones. In: Dukes’ physiology of domestic animals, 10th edn. Cornel University Press, Ithaca, pp 449–466Google Scholar
  49. 49.
    Kordowiak AM, Holko P (2009) Pochodne wanadu jako zwiaki o istotnym znaczeniu biologicznym. Czesc I. Dzialanie przeciwcukrzycowe. Post Biol Kom 36:361–376 (in Polish)Google Scholar
  50. 50.
    Strasia CA (1971) Vanadium: essentiality and toxicity in the laboratory rat. Dissertation. University of CaliforniaGoogle Scholar
  51. 51.
    Gruzewska K, Michno A, Pawelczyk T, Bielarczyk A (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65(5):603–611PubMedGoogle Scholar
  52. 52.
    Uthus EO, Nielsen FH (1990) Main content area effect of vanadium, iodine and their interaction on growth, blood variables, liver trace elements and thyroid status indices in rats. Magnes Trace Elem 9(4):219–226PubMedGoogle Scholar
  53. 53.
    Shepherd LC, Lima H, Ott M (2015) The effects of diet and vanadyl sulfate supplementation on blood glucose levels of diabetics: review of current human data and recommendations for further study. 2(3):00026.  https://doi.org/10.15406/mojph.2015.02.00026
  54. 54.
    Ulbricht C, Chao W, Costa D, Culwell S, Eichelsdoerfer P (2012) An evidence-based systematic review of vanadium by the natural standard research collaboration. J Diet Suppl 9(3):223–251.  https://doi.org/10.3109/19390211.2012.709365 CrossRefPubMedGoogle Scholar
  55. 55.
    Ivancsits S, Pilger A, Diem E, Schaffer A, Rudiger HW (2002) Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. MutatRes 519:25–35.  https://doi.org/10.1016/S1383-5718(02)00138-9 CrossRefGoogle Scholar
  56. 56.
    Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H (2003) Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52(3):581–587.  https://doi.org/10.2337/diabetes.52.3.581 CrossRefPubMedGoogle Scholar
  57. 57.
    Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Vanadium and diabetes. Mol Cell Biochem 188(1):73–80.  https://doi.org/10.1023/A:1006820522587 CrossRefPubMedGoogle Scholar
  58. 58.
    Dai S, Vera E, McNeill JH (1995) Lack of hematological effect of oral vanadium treatment in rats. Pharmacol Toxicol 76:263–264.  https://doi.org/10.1023/A:1006820522587 CrossRefPubMedGoogle Scholar
  59. 59.
    Anke M, Groppel B, Gruhn K, Kosla T, Szilagyi M (1986b) New research on vanadium deficiency in ruminants. In: Proceedings 5th Spurenelement Symposium. University Jena, Germany, Jena, pp 1266–1275Google Scholar
  60. 60.
    Fawcett JP, Farquhar SJ, Thou T, Shand BI (1997) Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol 80:202–206.  https://doi.org/10.1111/j.1600-0773.1997.tb00397.x CrossRefPubMedGoogle Scholar
  61. 61.
    Miranda CT, Carvalho S, Yamaki RT, Paniago EB, Borges RH, De Bellis VM (2010) Formation and structure in aqueous solution of complexes between vanadium (V) and aminohydroxamic acids that potentiates vanadium’s insulinomimetic activity: l-glutamic γ-hydroxamic and l-aspartic-β-hydroxamic acids. Inorganica Chimica Acta 363(14):3776–3783.  https://doi.org/10.1016/j.ica.2010.05.033 CrossRefGoogle Scholar
  62. 62.
    Tiago DM, Cancela ML, Aureliano M, Laize V (2008) Vanadate proliferative and anti-mineralogenic effects are mediated by MAPK and PI-3K/Ras/Erk pathways in a fish chondrocyte cell line. FEBS Lett 582:1381–1385.  https://doi.org/10.1016/j.febslet.2008.03.025 CrossRefPubMedGoogle Scholar
  63. 63.
    Sakurai H (2010) Overview and frontier for the development of metallopharmaceutics. J Health Sci 56(2):129–143CrossRefGoogle Scholar
  64. 64.
    Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106.  https://doi.org/10.1016/j.jtemb.2015.06.005 CrossRefPubMedGoogle Scholar
  65. 65.
    Wever R, Hemrika W (2001) Handbook of metalloproteins edited by Albrecht Messerschmidt, Robert Huber, Thomas Poulos and Karl Wieghardt. John Wiley and Sons, Ltd., ChichesterGoogle Scholar
  66. 66.
    Chasteen ND (1990) Vanadium in biological systems—physiology and biochemistry. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  67. 67.
    Zhang Y, Zhang Q, Feng C, Ren X, Li H, He K, Wang F, Zhou D, Lan Y (2014) Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers. Lipids Health Dis 13:39.  https://doi.org/10.1186/1476-511X-13-39 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kurt O, Ozden T, Ozsoy N, Tunali S, Can A, Akev N, Yanardag R (2011) Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. BioMetals 24(5):943–949.  https://doi.org/10.1007/s10534-011-9452-3 CrossRefPubMedGoogle Scholar
  69. 69.
    Francik R, Krosniak M, Barlik M, Kudła A, Grybos R, Librowski T (2011) Impact of vanadium complexes treatment on the oxidative stress factors in Wistar rats Plasma. Bioinorgan Chem Appl 2011:8.  https://doi.org/10.1155/2011/206316 CrossRefGoogle Scholar
  70. 70.
    Scibior A (2016) Vanadium (V) and magnesium (Mg) in vivo interactions: a review. Chem Biol Interact 258:21433.  https://doi.org/10.1016/j.cbi.2016.09.007 CrossRefGoogle Scholar
  71. 71.
    Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA (2015) Biotransformations of antidiabetic vanadium prodrugs in mammalian cells and cell culture media: a XANES spectroscopic study. Inorg Chem 54(14):6707–6718.  https://doi.org/10.1021/ic5028948 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sabbioni E, Rade J (1980) Relationship between iron and vanadium metabolism: the association of vanadium with bovine lactoferrin. Toxicol Lett 5(6):381–387.  https://doi.org/10.1016/0378-4274(80)90019-3 CrossRefPubMedGoogle Scholar
  73. 73.
    Kawakami N, Ueki T, Amata Y, Kanamori K, Matsuo K, Gekko K, Michibata H (2009) A novel vanadium reductase, Vanabin2, forms a possible cascade involved in electron transfer. Biochim Biophys Acta, Proteins Proteomics 1794(4):674–679.  https://doi.org/10.1016/j.bbapap.2009.01.007 CrossRefGoogle Scholar
  74. 74.
    Denu JM, Kohse DL, Vijayalakshmi J, Saper MA, Dixon JE (1996) Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci 93(6):2493–2498CrossRefGoogle Scholar
  75. 75.
    Anderson DH, Berg JR, Swinehart JH (1991) Uptake of vanadium by the ascidian Ascidia ceratodes. Comp Biochem Physiol 99(1–2):151–158.  https://doi.org/10.1016/0300-9629(91)90250-G CrossRefGoogle Scholar
  76. 76.
    Ueki T, Adachi T, Kawano S, Aoshima M, Yamaguchi N, Kanamori K, Michibata H (2003) Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1626(1–3):43–50.  https://doi.org/10.1016/S0167-4781(03)00036-8 CrossRefPubMedGoogle Scholar
  77. 77.
    Kanda T, Nose Y, Wuchiyama J, Uyama T, Moriyama Y, Michibata H (1997) Identification of a vanadium-associated protein from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 14(1):37–42.  https://doi.org/10.1016/S0167-4781(03)00036-8 CrossRefPubMedGoogle Scholar
  78. 78.
    Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902.  https://doi.org/10.1021/cr020607t CrossRefPubMedGoogle Scholar
  79. 79.
    Kawakami N, Ueki T, Matsuo K, Gekko K, Michibata H (2006) Selective metal binding by Vanabin2 from the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1760:1096–1101.  https://doi.org/10.1016/j.bbagen.2006.03.013 CrossRefPubMedGoogle Scholar
  80. 80.
    Eady RR (1996) Structureminus sign function relationships of alternative nitrogenases. Chem Rev 96(7):3013–3030.  https://doi.org/10.1021/cr950057h CrossRefGoogle Scholar
  81. 81.
    Kiss T, Kiss E, Garribba E, Sakurai H (2000) Speciation of insulinmimetic VO (IV)-containing drugs in blood serum. J Inorg Biochem 80:65–73.  https://doi.org/10.1016/S0162-0134(00)00041-6 CrossRefPubMedGoogle Scholar
  82. 82.
    Nriagu JP (1998) Vanadium in the environment. In: part 2: health effects. New YorkGoogle Scholar
  83. 83.
    NRC (1995) Nutrient requirements of laboratory animals. National Academy Press, Washington, D.CGoogle Scholar
  84. 84.
    Cantley LCJR, Resh MD, Guidotti G (1978) Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature 272:552–554.  https://doi.org/10.1038/272552a0 CrossRefPubMedGoogle Scholar
  85. 85.
    Hirano S, Suzuki KT (1996) Exposure metabolism and toxicity for rare earths and related compounds. Environ Health Perspect 104:85–95PubMedPubMedCentralGoogle Scholar
  86. 86.
    Venkataraman BV, Sudha S (2005) Vanadium toxicity. Asian J Exp Sci 19(2):127–134Google Scholar
  87. 87.
    Parker RD, Sharma RP (1978) Accumulation and depletion of vanadium in selected tissues of rats treated with vanadyl sulfate and sodium orthovanadate. J Environ Pathol Toxicol 2(2):235–245PubMedGoogle Scholar
  88. 88.
    Nielsen FH (1995) Vanadium in mammalian physiology and nutrition. In Metal ions in biological systems. Vanadium and its role in life, vol 31. Marcel Dekker, New York, pp 543–573Google Scholar
  89. 89.
    Urban J, Antonowicz-Juchniewicz J, Andrzejak R (2001) Wanad - zagrozenia i nadzieje. Medycyna Praktyczna 52:125–133Google Scholar
  90. 90.
    Alimonti A, Petrucci F, Krachler M, Bocca B, Caroll S (2000) Reference values for chromium, nickel and vanadium in urine of youngsters form the urban area of Rome. J Environ Monit 2:351–354.  https://doi.org/10.1039/b001616k CrossRefPubMedGoogle Scholar
  91. 91.
    Cam MC, Li WM, McNeill JH (1997) Partial preservation of pancreatic beta-cells by vanadium. Evidence for long term amelioration of diabetes. Metabolism 46(7):769–778.  https://doi.org/10.1016/S0026-0495(97)90121-9 CrossRefPubMedGoogle Scholar
  92. 92.
    Brichard SM, Henquin JC (1995) The role of vanadium in the management of diabetes. Trends Pharmacol Sci 16:265–269.  https://doi.org/10.1016/S0165-6147(00)89043-4 CrossRefPubMedGoogle Scholar
  93. 93.
    Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Pol 59(2):195–200PubMedGoogle Scholar
  94. 94.
    Hansen TV, Aaseth J, Alexander (1982) The effect of chelating agents on vanadium distribution in the rat body and on uptake by human erythrocytes. Arch Toxicol 50 (3): 195–202. https://doi.org/10.1007/BF00310851
  95. 95.
    Gummow B, Botha CJ, Noordhuizen JPTM, Heesterbeek JAP (2005) The public health implications of farming cattle in areas with high background concentrations of vanadium. Prev Vet Med 72:281–290.  https://doi.org/10.1016/j.prevetmed.2005.07.012 CrossRefPubMedGoogle Scholar
  96. 96.
    Hansard SL, Ammerman CB, Henry PR (1982) Vanadium metabolism in sheep. II. Effect of dietary vanadium on performance, vanadium excretion and bone deposition in sheep. J Anim Sci 55(2):350–356.  https://doi.org/10.2527/jas1982.552350x CrossRefPubMedGoogle Scholar
  97. 97.
    Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD (2006) The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 38:368–377.  https://doi.org/10.1016/j.bone.2005.08.015 CrossRefPubMedGoogle Scholar
  98. 98.
    Hulley PA, Conradie MM, Langeveldt CR, Hough FS (2002) Glucocorticoid-induced osteoporosis in the rat is prevented by the tyrosine phosphatase inhibitor, sodium orthovanadate. Bone 31(1):220–229.  https://doi.org/10.1016/S8756-3282(02)00807-4 CrossRefPubMedGoogle Scholar
  99. 99.
    Heinemann G, Fichtl B, Mentler M, Vogt W (2002) Binding of vanadate to human albumin in infusion solutions, to proteins in human fresh frozen plasma, and to transferring. J Inorg Biochem 90:38–42.  https://doi.org/10.1016/S0162-0134(02)00399-9 CrossRefPubMedGoogle Scholar
  100. 100.
    Purcell M, Neault JF, Malonga H, Arakawa H, Tajmir-Riahi HA (2001) Interaction of human serum albumin with oxovanadium ions studied by FT-IR spectroscopy and gel and capillary electrophoresis. Can J Chem 79(10):1415–1421.  https://doi.org/10.1139/v01-162 CrossRefGoogle Scholar
  101. 101.
    Willsky GR, Chi LH, Liang Y, Gaile DP, Hu Z, Crans DC (2006) Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulphate. Physiol Genomics 26:192–201.  https://doi.org/10.1152/physiolgenomics.00196.2005 CrossRefPubMedGoogle Scholar
  102. 102.
    Goldwaser I, Qian S, Gershonov E, Fridkin M, Shechter Y (2000) Organic vanadium chelators potentiate vanadium-evoked glucose metabolism in vitro and in vivo: establishing criteria for optimal chelators. Mol Pharmacol 58:738–746.  https://doi.org/10.1124/mol.58.4.738 CrossRefPubMedGoogle Scholar
  103. 103.
    Tang H, Sun Y, Xiu Q, Lu H, Han H (2007) Cyclooxygenase-2 induction requires activation of nuclear factor of activated T-cells in Beas-2B cells after vanadium exposure and plays anti-apoptotic role. Arch Biochem Biophys 468:92–99.  https://doi.org/10.1016/j.abb.2007.09.016 CrossRefPubMedGoogle Scholar
  104. 104.
    Elberg G, Li J, Shechter Y (1994) Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in cell-free experiments, depending on its oxidation state. Possible role of endogenous vanadium in controlling cellular protein tyrosine kinase activity. J Biol Chem 269(13):9521–9527PubMedGoogle Scholar
  105. 105.
    Bishayee A, Waghray A, Patel MA, Chatterjee M (2010) Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 294:1–12.  https://doi.org/10.1016/j.canlet.2010.01.030 CrossRefPubMedGoogle Scholar
  106. 106.
    Cantley LC Jr, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252(21):7421–7423PubMedGoogle Scholar
  107. 107.
    Krejsa CM, Nadler SG, Esseltyn JM, Kavanagh TJ, Ledbetter JA, Schieven GL (1997) Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors redox independent activation of NF-kappaB. J Biol Chem 272(17):11541–11549.  https://doi.org/10.1074/jbc.272.17.11541 CrossRefPubMedGoogle Scholar
  108. 108.
    Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu S (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88.  https://doi.org/10.1016/j.envint.2015.03.018 CrossRefPubMedGoogle Scholar
  109. 109.
    Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-sun G, Fantus IG, NGG JB, Hall DA, Soo Lum B, Shaver A (1994) Peroxovanadium compounds: a new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem 269:4596–4604PubMedGoogle Scholar
  110. 110.
    Wei D, Li M, Ding W (2007) Effect of vanadate on gene expression of the insulin signalling pathway in skeletal muscle of streptozotocin-induced diabetic rats. J Biol Inorg Chem 12:1265–1273.  https://doi.org/10.1007/s00775-007-0294-y CrossRefPubMedGoogle Scholar
  111. 111.
    Battell ML, Yuen VG, McNeill JH (1992) Treatment of BB rats with vanadyl sulphate. Pharmacol Commun 1:291–301Google Scholar
  112. 112.
    Cam MC, Cross GH, Serrano JJ, Lazaro R, McNeill JH (1993) In vivo antidiabetic actions of Naglivan, an organic vanadyl compound in streptozotocin induced diabetes. Diabetes Res Clin Pract 20(2):111–121.  https://doi.org/10.1016/0168-8227(93)90004-O CrossRefPubMedGoogle Scholar
  113. 113.
    Fantus IG, Tsiani E (1998) Multifunctional actions of vanadium compounds on insulin signalling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem 182:109–119.  https://doi.org/10.1023/A:1006853426679 CrossRefPubMedGoogle Scholar
  114. 114.
    Brichard SM, Ongemba LN, Henquin JC (1992) Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 35:522–527.  https://doi.org/10.1007/BF00400479 CrossRefPubMedGoogle Scholar
  115. 115.
    Trevino S, Velazquez-Vazquez D, Sanchez-Lara E, Diaz-Fonseca A, Flores-Hernandez JA, Perez-Benítez A, Brambila-Colombres E, Gonzalez-Vergara E (2016) Metforminium decavanadate as a potential metallopharmaceutical drug for the treatment of diabetes mellitus. Oxidative Med Cell Longev.  https://doi.org/10.1155/2016/6058705 CrossRefGoogle Scholar
  116. 116.
    Carpene C, Garcia-Vicente S, Serrano M, Marti L, Belles C, Royo M, Galitzky J, Zorzano A, Testar X (2017) Insulin-mimetic compound hexaquis (benzylammonium) decavanadate is antilipolytic in human fat cells. World J Diabetes 8(4):143–153.  https://doi.org/10.4239/wjd.v8.i4.143 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Yraola F, García-Vicente S, Marti L, Albericio F, Zorzano A, Royo M (2007) Understanding the mechanism of action of the novel SSAO substrate (C7NH10)6(V10O28).2H2O, a prodrug of peroxovanadate insulin mimetics. Chem Biol Drug Des 69:423–428.  https://doi.org/10.1111/j.1747-0285.2007.00516.x CrossRefPubMedGoogle Scholar
  118. 118.
    Zorzano A, Palacín M, Marti L, García-Vicente S (2009) Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem 103:559–566.  https://doi.org/10.1016/j.jinorgbio.2009.01.015 CrossRefPubMedGoogle Scholar
  119. 119.
    Yraola F, Zorzano A, Albericio F, Royo M (2009) Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates. Chem Med Chem 4:495–503.  https://doi.org/10.1002/cmdc.200800393 CrossRefPubMedGoogle Scholar
  120. 120.
    Park SJ, Youn C, Hyun JW, You HJ (2013) The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol Trace Elem Res 151:294–300.  https://doi.org/10.1007/s12011-012-9557-8 CrossRefPubMedGoogle Scholar
  121. 121.
    Huang M, Wu Y, Wang N, Wang Z, Zhao P, Yang X (2014) Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res 157:242–248.  https://doi.org/10.1007/s12011-013-9882-6 CrossRefPubMedGoogle Scholar
  122. 122.
    Swarup G, Cohen S, Garbers DL (1982) Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun 107:1104–1109.  https://doi.org/10.1016/0006-291X(82)90635-0 CrossRefGoogle Scholar
  123. 123.
    Wu Y, Huang M, Zhao P, Yang X (2013) Vanadyl acetylacetonate upregulates PPARg and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem 18:623–631.  https://doi.org/10.1007/s00775-013-1007-3 CrossRefPubMedGoogle Scholar
  124. 124.
    Garcia-Vicente S, Yraola F, Marti L (2007) Oral insulinmimetic compounds that act independently of insulin. Diabetes 56:486–493.  https://doi.org/10.2337/db06-0269 CrossRefPubMedGoogle Scholar
  125. 125.
    Fraqueza G, Ohlin CA, Casey WH, Aureliano M (2012) Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 107:82–89.  https://doi.org/10.1039/c2dt31688a CrossRefPubMedGoogle Scholar
  126. 126.
    Saxena AK, Srivastava P, Kale RK, Baquer NZ (1993) Impaired antioxidant status in diabetic rat liver: effect of vanadate. Biochem Pharmacol 45(3):539–542.  https://doi.org/10.1016/0006-2952(93)90124-F CrossRefPubMedGoogle Scholar
  127. 127.
    Krosniak M, Kowalska J, Francik R, Gryboś R, Blusz M, Kwiatek WM (2013) Influence of vanadium–organic ligands treatment on selected metal levels in kidneys of STZ rats. Biol Trace Elem Res 153(1–3):319–328.  https://doi.org/10.1007/s12011-013-9688-6 CrossRefGoogle Scholar
  128. 128.
    Hill CH (1994) Interaction of vanadium and phosphorus in chicks. Biol Trace Elem Res 46(3):269–278.  https://doi.org/10.1007/BF02789302 CrossRefPubMedGoogle Scholar
  129. 129.
    Ukkola O, Santaniemi M (2002) Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J Intern Med 251(6):467–475.  https://doi.org/10.1046/j.1365-2796.2002.00992.x CrossRefPubMedGoogle Scholar
  130. 130.
    Srivastava AK, Mehdi MS (2004) Insulino-mimetic and anti-diabetic effects of vanadium compounds diabetes. Diabet Med 22:2–13.  https://doi.org/10.1111/j.1464-5491.2004.01381
  131. 131.
    Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, Jiang ZY, Willsky GR, Kahn CR (2000) Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 49:400–410.  https://doi.org/10.1016/S0026-0495(00)90418-9 CrossRefPubMedGoogle Scholar
  132. 132.
    Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45(5):659–666.  https://doi.org/10.2337/diab.45.5.659 CrossRefPubMedGoogle Scholar
  133. 133.
    Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med 16:253–267.  https://doi.org/10.1002/jtra.10034 CrossRefGoogle Scholar
  134. 134.
    McNeill JH, Yuen VG, Dai S, Orgiv C (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem 153:175–180.  https://doi.org/10.1007/BF01075935 CrossRefPubMedGoogle Scholar
  135. 135.
    Sigel A, Sigel H,Sigel R (2013) Interrelations between essential metal ions and human diseases, vol 13, Zurich, Switzerland.  https://doi.org/10.1007/978-94-007-7500-8 Google Scholar
  136. 136.
    Gonzalez-Sanchez C, Bermudez-Pena C, Guerrero-Romero F, Trenzado CE, Montes-Bayon M, Sanz-Medel A, Llopis J (2012) Effect of bis(maltolato)oxovanadium (IV) (BMOV) on selenium nutritional status in diabetic streptozotocin rats. Brit J Nutr 108:893–899.  https://doi.org/10.1017/S0007114511006131 CrossRefGoogle Scholar
  137. 137.
    Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80:3311–3320.  https://doi.org/10.1210/jcem.80.11.7593444 CrossRefPubMedGoogle Scholar
  138. 138.
    Domingo JL, Gomez M (2016) Vanadium compounds for the treatment of human diabetes mellitus: a scientific curiosity? A review of thirty years of research. Food Chem Toxicol 95:137–141.  https://doi.org/10.1016/j.fct.2016.07.005 CrossRefPubMedGoogle Scholar
  139. 139.
    Valera A, Rodriguez-Gil JE, Bosch F (1993) Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. J Clin Invest 92:4–11.  https://doi.org/10.1172/JCI116580 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Brichard SM, Desbuquois B, Girard J (1993) Vanadate treatment of diabetic rats reverses the impaired expression of genes involved in hepatic glucose metabolism. Effects on glycolytic and gluconeogenic enzymes, and on glucose transport GLUT2. Mol Cell Endocrinol 91(1–2):91–97.  https://doi.org/10.1016/0303-7207(93)90259-M CrossRefPubMedGoogle Scholar
  141. 141.
    Khandelwal RL, Pugazhenthi S (1995) In vivo effects of vanadate on hepatic glycogen metabolizing and lipogenic enzymes in insulin-dependent and insulin-resistant diabetic animals. Mol Cell Biochem 153:87–94CrossRefGoogle Scholar
  142. 142.
    Carey JD, Azevedo JL, Morris PG, Pories WJ, Dohm GL (1995) Okadaic acid, vanadate, and phenylarsine oxide stimulate 2-deoxyglucose transport in insulin-resistant human skeletal muscle. Diabetes 44(6):682–688.  https://doi.org/10.1007/BF01075922 CrossRefPubMedGoogle Scholar
  143. 143.
    Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H (2006) Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sci 78:2860–2866.  https://doi.org/10.1016/j.lfs.2005.11.008 CrossRefPubMedGoogle Scholar
  144. 144.
    Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26:1277–1294CrossRefGoogle Scholar
  145. 145.
    Connell B (2001) Select vitamins and minerals in the management of diabetes. Diabetes Spectrum 14:133–148.  https://doi.org/10.2337/diaspect.14.3.133 CrossRefGoogle Scholar
  146. 146.
    Ingram JL, Antao-Menezes A, Turpin EA (2007) Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis. Respir Res 8:1–13.  https://doi.org/10.1186/1465-9921-8-34 CrossRefGoogle Scholar
  147. 147.
    Tolman EL, Barris E, Burns M, Pansini A, Partridge R (1979) Effects of vanadium on glucose metabolism in vitro. Life Sci 25(13):1159–1164.  https://doi.org/10.1016/0024-3205(79)90138-3 CrossRefPubMedGoogle Scholar
  148. 148.
    Irving E, Stoker AW (2017) Vanadium compounds as PTP inhibitors. Molecules 22(12):2269CrossRefGoogle Scholar
  149. 149.
    Aureliano M (2014) Decavanadate contribution to vanadium biochemistry: in vitro and in vivo studies. Inorg Chim Acta 420:4–7.  https://doi.org/10.1016/j.jinorgbio CrossRefGoogle Scholar
  150. 150.
    White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:413–422.  https://doi.org/10.1152/ajpendo.00514.2001 CrossRefGoogle Scholar
  151. 151.
    Hei YJ, Farahbakhshian S, Chen X, Battell ML, McNeill JH (1998) Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Mol Cell Biochem 178(1–2):367–375.  https://doi.org/10.1152/ajpendo.00514.2001 CrossRefPubMedGoogle Scholar
  152. 152.
    Brannick B, Kocak M, Solomon S (2017) Vanadium in glucose metabolism: past, present and future. J Toxicol Pharmacol 1:011Google Scholar
  153. 153.
    Jackson TK, Safhanick AI, Sparks JD, Sparks CE, Bolognino M, Amatruda JM (1988) Insulin-mimetic effects of vanadate in primary cultures of rat hepatocytes. Diabetes 37:1234–1240.  https://doi.org/10.1016/S1383-5718(02)00138-9 CrossRefPubMedGoogle Scholar
  154. 154.
    Cuncic C, Detich N, Ethier D (1999) Vanadate inhibition of protein tyrosine phosphatases in Jurkat cells: modulation by redox state. J Biol Inorg Chem 4:354–359.  https://doi.org/10.1007/s007750050322 CrossRefPubMedGoogle Scholar
  155. 155.
    Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851.  https://doi.org/10.1074/jbc.272.2.84.3 CrossRefPubMedGoogle Scholar
  156. 156.
    Castan I, Wijkander J, Manganiello V, Degerman E (1999) Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. Biochem J 339(2):281–289.  https://doi.org/10.1042/bj3390281 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Fantus IG, Deragon G, Lai R, Tang S (1995) Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine phosphatase activity to alter cellular signalling. Mol Cell Biochem 153:103–112.  https://doi.org/10.1007/BF01075924 CrossRefPubMedGoogle Scholar
  158. 158.
    Seale AP, de Jesus LA, Park M, Kim YS (2006) Vanadium and insulin increase adiponectin production in 3T3-L1 adipocytes. Pharmacol Res 54:30–38.  https://doi.org/10.1016/j.phrs.2006.01.013 CrossRefPubMedGoogle Scholar
  159. 159.
    Li SH, McNeill JH (2001) In vivo effects of vanadium on GLUT4 translocation in cardiac tissue of STZ-diabetic rats. Mol Cell Biochem 217:121–129.  https://doi.org/10.1023/A:1007224828753 CrossRefPubMedGoogle Scholar
  160. 160.
    Kopp SJ, Daar J, Paulson DJ, Romano FD, Laddaga R (1997) Effects of oral vanadyl treatment on diabetes-induced alterations in heart GLUT4 transporter. J Mol Cell Cardiol 29:2355–2362.  https://doi.org/10.1006/jmcc.1997.0469 CrossRefPubMedGoogle Scholar
  161. 161.
    Mohammad A, Sharma V, McNeill JH (2002) Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem 233(1-2):139–143.  https://doi.org/10.1023/A:1015558328757 CrossRefPubMedGoogle Scholar
  162. 162.
    Rodriguez-Mercado JJ, Roldan-Reyes E, Altamirano-Lozano M (2003) Genotoxic effects of vanadium (IV) in human peripheral blood cells. Toxicol Lett 144:359–369.  https://doi.org/10.1016/S0378-4274(03)00255-8 CrossRefPubMedGoogle Scholar
  163. 163.
    Liem DA, Gho CC, Gho BC, Kazim S, Manintveld OC, Verdouw PD, Duncker DJ (2004) The tyrosine phosphatas inhibitor bis(maltolato)-oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels. J Pharmacol Exp Ther 309:1256–1262.  https://doi.org/10.1124/jpet.103.062547 CrossRefPubMedGoogle Scholar
  164. 164.
    Pugazhenthi S, Angel JF, Khandelwal RL (1993) Effects of high sucrose diet on insulin-like effects of vanadate in diabetic rats. Mol Cell Biochem 122(1):77–84.  https://doi.org/10.1007/BF00925740 CrossRefPubMedGoogle Scholar
  165. 165.
    Clark AS, Fagan JM, Mitch WE (1985) Selectivity of insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232(1):273–276.  https://doi.org/10.1042/bj2320273 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Michibata H, Sakurai H (1990) In: Chasteen ND (ed) Vanadium in biological systems. Kluwer, BostonGoogle Scholar
  167. 167.
    Yamaguchi M, Oishi H, Suketa Y (1989) Effect of vanadium on bone metabolism in weanling rats: zinc prevents the toxic effect of vanadium. Res Exp Med (Berl) 189(1):47–53CrossRefGoogle Scholar
  168. 168.
    Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265.  https://doi.org/10.1016/S1040-8428(01)00221-9 CrossRefPubMedGoogle Scholar
  169. 169.
    Dessoize B (2004) Metal and metal compounds in cancer treatment. Anticancer Res 24(3a):1529–1544Google Scholar
  170. 170.
    Holko P, Ligeza J, Kisielewska J, Kordowiak AM, Klein A (2008) The effect of vanadyl sulphate (VOSO4) on autocrine growth of human epithelial cancer cell lines. Pol J Pathol 59(1):3–8PubMedGoogle Scholar
  171. 171.
    Mustafi D, Peng B, Foxley S, Makinen MW, Karczmar GS, Zamora M, Ejnik J, Martin H (2009) New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer. J Biol Inorg Chem 8:1187–1197.  https://doi.org/10.1007/s00775-009-0562-0 CrossRefGoogle Scholar
  172. 172.
    Alexandrova R, Alexandrov I, Nikolova E (2002) Effect of orally administered ammonium vanadate on the immune response of experimental animals. Comptes Rendus de l’ Academie Bulgare des Sciences 55(3):69Google Scholar
  173. 173.
    Tsave O, Petanidis S, Kioseoglou E, Yavropoulou MP, Yovos JG, Anestakis D, Tsepa A, Salifoglou A (2016) Role of vanadium in cellular and molecular immunology: association with immune-related inflammation and pharmacotoxicology mechanisms. Oxid Med Cell Longev.  https://doi.org/10.1155/2016/4013639 CrossRefGoogle Scholar
  174. 174.
    Ha D, Joo H, Ahn G, Kim MJ, Bing SJ, An S, Kim H, Kang KG, Lim YK, Jee Y (2012) Jeju ground water containing vanadium induced immune activation on splenocytes of low dose 훾-rays-irradiated mice. Food Chem Toxicol 50(6):2097–2105.  https://doi.org/10.1016/j.fct.2012.03.041 CrossRefPubMedGoogle Scholar
  175. 175.
    Harati M, Ani M (2006) Low doses of vanadyl sulfate protect rats from lipid peroxidation and hypertriglyceridemic effects of fructose-enriched diet. Int J Diab Metabol 14(3):134–137Google Scholar
  176. 176.
    Mongold JJ, Cros GH, Vian L, Tep A, Ramanadham S, Siou G, Diaz J, McNeill JH, Serrano JJ (1990) Toxicological aspects of vanadyl sulphate on diabetic rats: effects on vanadium levels and pancreatic B-cell morphology. Pharmacol Toxicol 67(3):192–198.  https://doi.org/10.1111/j.1600-0773.1990.tb00812.x CrossRefPubMedGoogle Scholar
  177. 177.
    Malissen B, Gregoire C, Malissen M, Roncagalli R (2014) Integrative biology of T cell activation. Nat Immunol 15(9):790–797.  https://doi.org/10.1038/ni.2959 CrossRefPubMedGoogle Scholar
  178. 178.
    Theron AJ, Tintinger GR, Anderson R (2012) Harmful interactions of non-essential heavy metals with cells of the innate immune system. J Clinic Toxicol S 3005.  https://doi.org/10.4172/2161-0495.S3-005
  179. 179.
    Fickl H, Theron AJ, Grimmer HR, Anderson R (2006) Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radic Biol Med 40(1):146–155.  https://doi.org/10.4172/2161-0495.S3-005 CrossRefPubMedGoogle Scholar
  180. 180.
    Davies MJ (2011) Myeloperoxidase derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48(1):8–19.  https://doi.org/10.3164/jcbn.11_006FR CrossRefPubMedGoogle Scholar
  181. 181.
    Deng Y, Cui H, Peng X, Fang J, Wang K, Cui W, Liu X (2012) Dietary vanadium induces oxidative stress in the intestine of broilers. Biol Trace Elem Res 145(1):52–58.  https://doi.org/10.1007/s12011-011-9163-1 CrossRefPubMedGoogle Scholar
  182. 182.
    Van Vleet JF, Boon GD, Ferrans VJ (1981) Induction of lesions of selenium-vitamin E deficiency in weanling swine fed silver, cobalt, tellurium, zinc, cadmium, and vanadium. Am J Vet Res 42(5):789–799PubMedGoogle Scholar
  183. 183.
    Ghrehbeglou M, Arjmand G, Haeri MR, Khazeni M (2015) Nonselective mevalonate kinase inhibitor as a novel class of antibacterial agents. Cholesterol 2015:147601.  https://doi.org/10.1155/2015/147601 CrossRefGoogle Scholar
  184. 184.
    Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94(6):1167–1184.  https://doi.org/10.1189/jlb.0313153 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Basu A, Singha S, Roy A, Bhattacharjee A, Bhuniya A, Baral R, Biswas J, Bhattacharya S (2015) Vanadium(III)-L-cysteine protects cisplatin-induced nephropathy through activation of Nrf2/HO-1 pathway. Free Radic Res 50(1):39–55.  https://doi.org/10.3109/10715762.2015.1102908 CrossRefPubMedGoogle Scholar
  186. 186.
    Mao LL, Hao DL, Mao XWXYF, Huang TT, Wu BN, Wang LH (2015) Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition. Neurosci Lett 602:120–125.  https://doi.org/10.1016/j.neulet.2015.06.040 CrossRefGoogle Scholar
  187. 187.
    Kim AD, Zhang R, Ah Kang K, Jin You H, Won Hyun J (2011) Increased glutathione synthesis following Nrf2 activation by vanadyl sulfate in human chang liver cells. Int J Mol Sci 12:8878–8894.  https://doi.org/10.3390/ijms12128878 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Yilmaz-Ozden T, Sirin OK, Tunali S, Akev N, Can A, Yanardag R (2014) Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn J Basic Med Sci 14(2):105–109CrossRefGoogle Scholar
  189. 189.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Diabetes 52:599–622.  https://doi.org/10.1210/er.2001-0039 CrossRefGoogle Scholar
  190. 190.
    Desco MC, Asensi M, Marquez R, Martinex-Vallas J, Vento M, Pallardo FY, Sastre J, Vina J (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes. Diabetes 51(4):1118–1124.  https://doi.org/10.2337/diabetes.51.4.1118 CrossRefPubMedGoogle Scholar
  191. 191.
    Ozturk N, Olgar Y, Ozdemir S (2013) Trace elements in diabetic cardiomyopathy: an electrophysiological overview. World J Diabetes 4:92–100.  https://doi.org/10.4239/wjd.v4.i4.92 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Genet G, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol Cell Biochem 236(1):7–12.  https://doi.org/10.1023/A:101610313 CrossRefPubMedGoogle Scholar
  193. 193.
    Bhuiyan MS, Fukunaga K (2009) Cardioprotection by vanadium compounds targeting Akt-mediated signaling. Aust J Pharm 110:1–13.  https://doi.org/10.1254/jphs.09R01CR CrossRefGoogle Scholar
  194. 194.
    Capella MA, Capella LS, Valente RC (2007) Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol 23:413–420.  https://doi.org/10.1007/s10565-007-9003-4 CrossRefPubMedGoogle Scholar
  195. 195.
    Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and antidiabetic effects of vanadium compounds. Diabets Med 22:2–13.  https://doi.org/10.1111/j.1464-5491.2004.01381.x CrossRefGoogle Scholar
  196. 196.
    Boulassel B, Sadeg N, Roussel O, Perrin M, Belhadj-Tahar H (2011) Fatal poisoning by vanadium. Forensic Sci Int 206:79–81.  https://doi.org/10.1016/j.forsciint.2010.10.027 CrossRefGoogle Scholar
  197. 197.
    Aureliano M, Gandara RM (2005) Decavanadate effects in biological systems. J Inorg Biochem 99:979–985.  https://doi.org/10.1016/j.forsciint.2010.10.027 CrossRefPubMedGoogle Scholar
  198. 198.
    Villani P, Cordelli E, Leopardi P, Siniscalchi E, Veschetti E, Fresegna AM, Crebelli R (2007) Evaluation of genotoxicity of oral exposure to tetravalent vanadium in vivo. Toxicol Lett 170:11–18.  https://doi.org/10.1016/j.toxlet.2006.07.343 CrossRefPubMedGoogle Scholar
  199. 199.
    Smith DM, Pickering RM, Lewith GT (2008) A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. Int J Med 101:351–358.  https://doi.org/10.1093/qjmed/hcn003 CrossRefGoogle Scholar
  200. 200.
    Suwalsky M, Fierro P, Villena F (2012) Human erythrocytes and neuroblastoma cells are in vitro affected by sodium orthovanadate. Biochim Biophys Acta 1818:2260–2270.  https://doi.org/10.1016/j.bbamem.2012.04.012 CrossRefPubMedGoogle Scholar
  201. 201.
    Suwalsky M, Fierro P, Villena F (2013) Effects of sodium metavanadate on in vitro neuroblastoma and red blood cells. Arch Biochem Biophys 535:248–256.  https://doi.org/10.1016/j.abb.2013.04.006 CrossRefPubMedGoogle Scholar
  202. 202.
    Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes—a view to the future. J Inorg Biochem 103:554–558.  https://doi.org/10.1016/j.jinorgbio.2008.12.003 CrossRefGoogle Scholar
  203. 203.
    Montiel-Davalos A, Gonzalez-Villava A, Rodriguez-Lara V, Montano LF, Fortoul TI, Lopez-Marure R (2012) Vanadium pentoxide induces activation and death of endothelial cells. J Appl Toxicol 32(1):26–33.  https://doi.org/10.1002/jat.1695 CrossRefPubMedGoogle Scholar
  204. 204.
    Soares SS, Gutierrez-Merino C, Aureliano M (2007) Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. J Inorg Biochem 101:789–796.  https://doi.org/10.1016/j.jinorgbio.2007.01.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Deepika Tripathi
    • 1
  • Veena Mani
    • 1
  • Ravi Prakash Pal
    • 1
  1. 1.National Dairy Research InstituteKarnalIndia

Personalised recommendations