Advertisement

Biological Trace Element Research

, Volume 186, Issue 1, pp 122–134 | Cite as

Gold and Silver Nanoparticles Biomimetically Synthesized Using Date Palm Pollen Extract-Induce Apoptosis and Regulate p53 and Bcl-2 Expression in Human Breast Adenocarcinoma Cells

  • Hussaina Banu
  • N. Renuka
  • S.M. Faheem
  • Raees Ismail
  • Vinita Singh
  • Zahra Saadatmand
  • Saad Sultan Khan
  • Kavya Narayanan
  • Alma Raheem
  • Kumpati Premkumar
  • Geetha Vasanthakumar
Article

Abstract

Recently, several attempts have been made to use the phytopharmaceuticals from plant extracts as reducing, capping and stabilizing agents for the biomimetic synthesis of various metal nanoparticles conjugated to the phytopharmaceuticals. These biogenic metal nanoparticles are non-toxic and can be used as contrast agents, drug delivery vehicles and photothermal agents for cancer therapy. Herein, we report the synthesis of both silver and gold nanoparticles using the pollen extract of Phoenix dactylifera (Date Palm), characterization using UV-visible spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, quantitation of phytochemicals capping the nanoparticles using Folin – Ciocalteu’s method, cytotoxicity studies on MCF-7 breast cancer cells, cancer cell death analysis using fluorescent microscopy, and modulation of expression of the pro-apoptotic p53 and anti-apoptotic Bcl-2 proteins. The biosynthesis resulted in stable and poly-dispersed silver nanoparticles and gold nanoparticles, exhibiting strong and broad surface plasmon absorption peaks. The elemental analysis confirmed the presence of gold and silver of high purity and also the organic moieties from the plant extract acting as capping and stabilizing agents. The biogenic nanoparticles also exhibited dose-dependent cytotoxicity on MCF-7 cells and showed signs of apoptotic cell death. Immunoassays revealed the upregulation of the pro-apoptotic protein p53 and down-regulation of the anti-apoptotic protein Bcl-2 after the nanoparticle treatment.

Keywords

Nanoparticles Phytochemicals Phoenix dactylifera Breast cancer Cytotoxicity Apoptosis 

Notes

Acknowledgements

We would like to acknowledge Dr. Firdos Alam Khan, Chairperson of School of Life Sciences, Manipal University, Dubai for his cooperation and encouragement; Dr. Taher Rizvi, Professor, College of Medicine and Health Sciences, UAE University; Al-Ain for providing us the cell lines; Dr. Elango, Researcher at Masdar Institute, Abu Dhabi for helping us with some of the characterization studies; Dr. N.K. Rao, Plant Genetic Resources Scientist at the International Center for Biosaline Agriculture (ICBA) for arranging the plant source; Dr. Zakiya Ansari, Assistant Professor – English Language Teaching, Manipal University, Dubai for proof-reading the manuscript; and the undergraduate students Ms. Sajidah Hashim and Ms. Sahadiya Zubair for their support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (Accessed august 2014), GLOBOCAN 2012 v1.0, http://globocan.iarc.fr/Default.aspx
  2. 2.
    Ansari SH, Islam F, Sameem M (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3:142–146CrossRefGoogle Scholar
  3. 3.
    Scheepens A, Tan K, Paxton JW (2010) Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr 5:75–87CrossRefGoogle Scholar
  4. 4.
    Kesarwani K, Gupta R (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3:253–256CrossRefGoogle Scholar
  5. 5.
    Bhadoriya SS, Mangal A, Madoriya N, Dixit P (2011) Bioavailability and bioactivity enhancement of herbal drugs by “nanotechnology”: a review. J Curr Pharm Res 8:1–7Google Scholar
  6. 6.
    Jeyaraj M, Rajesh M, Arun R, Mubarak Ali DB, Sathishkumar G, Sivanandhan G, Deva GK, Manickavasagam M, Premkumar K, Thajuddin N, Ganapathi A (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B Biointerfaces 102:708–717CrossRefGoogle Scholar
  7. 7.
    Govender R, Phulukdaree A, Gengan RM, Anand K, Chuturgoon AA (2013) Silver nanoparticles of Albizia adianthifolia: the induction of apoptosis in human lung carcinoma cell line. J Nanobiotechnol 11:5.  https://doi.org/10.1186/1477-3155-11-5 CrossRefGoogle Scholar
  8. 8.
    Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S (2012) Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Biomed 6:1–10Google Scholar
  9. 9.
    Nune SK, Chanda N, Shukla R, Kavita K, Kulkarni RR, Thilakavathi S, Mekapothula S, Kannan R (2009) Katti KV (2009) green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19:2912–2920CrossRefGoogle Scholar
  10. 10.
    Mukundan D, Mohankumar R, Vasanthakumari R, ICAN (2014) Green synthesis of gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and in vitro anticancer activity. Int Conf Adv New Mater 2:375–380Google Scholar
  11. 11.
    Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Third edition. Oxford University Press, OxfordGoogle Scholar
  12. 12.
    Nixon RW (1951) The date palm: “tree of life” in subtropical deserts. Econ Bot 5:274–301CrossRefGoogle Scholar
  13. 13.
    Duke JA, Wain KK (1981) Medicinal plants of the world. In: Computer index with more than 85,000 entries 3 volumes Plant Genetics and Germplasm Institute. Agricultural Research Service, Beltsville, MarylandGoogle Scholar
  14. 14.
    Hartwell JL (1967–1971) Plants used against cancer a survey. Lloydia, p 30.Google Scholar
  15. 15.
    El-Sohaimy SA, Hafez EE (2010) Biochemical and nutritional characterizations of date palm fruits (Phoenix dactylifera L). J App Sci Res 6:1060–1067Google Scholar
  16. 16.
    Al-Farsi MA, Lee CY (2008) Nutritional and functional properties of dates: a review. Crit. Rev Food Sci Nutr 48:877–887CrossRefGoogle Scholar
  17. 17.
    Mohamed SM, Bosila HA, El-Sharabsy SF, Ibrahim IA, Refay KA (2001) Phytochemical screening of some in vivo and in vitro date palm tissues. The Second International Conference on Date Palms, Al-Ain, UAE, March 25-27, p 87.Google Scholar
  18. 18.
    Abdul A, Allaith A (2008) Antioxidant activity of Bahraini date palm (Phoenix dactylifera L) fruit of various cultivars. Int J Food Sci Tech 43:1033–1040CrossRefGoogle Scholar
  19. 19.
    Ahmed IA, Ahmed A, Robinson RK (1995) Chemical composition of date varieties as influenced by the stage of ripening. Food Chem 54:305–309CrossRefGoogle Scholar
  20. 20.
    Mansouri A, Embarek G, Kokkalou E, Kefalas P (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89:411–420CrossRefGoogle Scholar
  21. 21.
    Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521CrossRefGoogle Scholar
  22. 22.
    Hong YJ, Tomas-Barberan FA, Kader AA, Mitchel AE (2006) The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). J Agric Food Chem 54:2405–2411CrossRefGoogle Scholar
  23. 23.
    Biglari F, Alkarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107:1636–1641CrossRefGoogle Scholar
  24. 24.
    Boukouada M, Yousfi M (2009) Phytochemical study of date seeds lipids of three fruits (Phoenix dactylifera L) produced in Ouargla region. Annales de la Faculté des Sciences et Sciemces de I’Ingénieur 1:66–74Google Scholar
  25. 25.
    Mahran GH, Abdel-Wahab SM, Athan AM (1976) A phytochemical study of date palm pollen. Planta Med 29:171–175CrossRefGoogle Scholar
  26. 26.
    Bosila HA, Mohamed SM, Ibrahim SIA, Refay KA (2001) Phytochemical screening of some in vivo and in vitro date palm tissue. The Second International Conference on Data Palms, Al-Ain, United Arab Emirates, March 25–27.Google Scholar
  27. 27.
    Al-Samarai AH, Al-Salihi FG, Al-Samarai RR (2016) Phytochemical constituents and nutrient evaluation of date palm (Phoenix dactylifera, L) pollen grains. Tikrit Journal of Pure Science 21(1):2016Google Scholar
  28. 28.
    Hassan HM (2011) Chemical composition and nutritional value of palm pollen grains. Global journal of biotechnology and Biochemistry 6(1):1–7Google Scholar
  29. 29.
    Mahran GH, Abdul-Wahab SM, Attia AM (1985) Constituents of the Egyptian date palm pollen: Saponin and lipid constituents of pollen grains. First International Conference, Vol I, Zag University.Google Scholar
  30. 30.
    Bosila HA, El-Sharabasy SF, Mohamed SM, Ibrahim SIA, Refay KA (2001) Production of some secondary products from date palm tissue cultures (Sewi cultivar) using some precursors I. Callus stage. Second International Conference on Date Palms, Al Ain, United Arab Emirates March 25–27.Google Scholar
  31. 31.
    Bacha MA, Ali MA, Farahat FA (1997) Chemical composition of pollen grains of some date palm males grown in Riyadh, Saudi Arabia. Arab Gulf J Sci Res 15(3):783–803Google Scholar
  32. 32.
    Abed AM (2005) Determination of carbohydrates, protein, phenolic compounds content in pollen grains of three date palm (Phoenix dactylifera) male cultivars. Basrah, J Date Palm Res 4(2):141–151Google Scholar
  33. 33.
    Campos MG, Bogdanov S, Almeida LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F (2008) Pollen composition and standardization of analytical methods. J Agri Res bee worlds 47(2):156–163Google Scholar
  34. 34.
    Abbas FA, Ateya AM (2011) Estradiol, esteriol, estrone and novel flavonoids from date palm pollen Aust. J App Sci Res 7:606–614Google Scholar
  35. 35.
    Dash SS, Sikder AK, Bag BG, Bandyopadhyay S (2013) Phoenix dactylifera (Date Palm) seed extract mediated green synthesis of gold nanoparticles and its application as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol Int. J Nanomat Biostr 3:42–46Google Scholar
  36. 36.
    Zayed MF, Eisa WH (2014) Phoenix dactylifera L leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 121:238–244CrossRefGoogle Scholar
  37. 37.
    Khatami M, Pourseyedi S (2015) Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis of high stable AgNPs with high antifungal and antibacterial activity. IET Nanobiotechnol 9:1–7CrossRefGoogle Scholar
  38. 38.
    Aitenneite H, Abboud Y, Tanane O, Solhy A, Sebti S, El Bouari A (2016) Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous phoenix Dactylifera L (date palm) leaf extract and their catalytic activity for 4-Nitrophenol reduction. J Mater Environ Sci 7:2335–2339Google Scholar
  39. 39.
    Azizi S, Namvar F, Mohamad R, Mahdavi M (2015) Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles. Mater Lett 148:106–109CrossRefGoogle Scholar
  40. 40.
    Hou CT, Shaw JF (2010) Biocatalysis and biomolecules engineering. John Willey & sons, Hoboken, New Jersey, p 452CrossRefGoogle Scholar
  41. 41.
    Singh PP, Bhakat C (2012) Green synthesis of gold nanoparticles and silver nanoparticles from leaves and bark of Ficus carica for nanotechnological applications. Int J Sci Res Pub 2:1Google Scholar
  42. 42.
    Ahmad T, Wani IA, Ahmed J, Al-Hartomy OA (2014) Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions. Appl Nanosci 4:491–498CrossRefGoogle Scholar
  43. 43.
    Ray D, Aswal VK (2010) SANS studies insight into improving of yield of block copolymer-stabilized gold nanoparticles. AIP conference proceedings 19:219CrossRefGoogle Scholar
  44. 44.
    Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramaniya R (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59CrossRefGoogle Scholar
  45. 45.
    Boken J, Dalela S, Sharma CK, Kumar D (2013) Detection of Pathogenic Escherichia coli (E.coli) Using Robust Silver and Gold Nanoparticles. J Chem Eng Process Technol 4:1.  https://doi.org/10.4172/2157-7048.1000175 CrossRefGoogle Scholar
  46. 46.
    Raliya R, Tarafdar JC (2013) Biosynthesis of gold nanoparticles using rhizoctonia bataticola TFR-6. Adv Sci Eng Med 5:1073–1076CrossRefGoogle Scholar
  47. 47.
    Khan MAM, Kumar S, Ahamed M, Alrokayan SA, Al-Salhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6:1–8Google Scholar
  48. 48.
    Al-Farsi M, Alasalvar C, Morris A, Baron M, Shahidi F (2005) Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7592–7599CrossRefGoogle Scholar
  49. 49.
    Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y (2003) Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23:1719–1726CrossRefGoogle Scholar
  50. 50.
    Vayalil PK (2002) Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J Agric Food Chem 50:610–617CrossRefGoogle Scholar
  51. 51.
    Vinson JA, Zubic L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24:44–50CrossRefGoogle Scholar
  52. 52.
    Al-Shoaibi Z, Al-Mamary MA, Al-Habori MA, Al-Zubairi AS, Abdelwahab SI (2012) In vitro antioxidative and hepatoprotective effects of palm date fruits (Phoenix dactylifera). Int J Pharmacol 8:185–191CrossRefGoogle Scholar
  53. 53.
    Dammak I, Abdallah FB, Boudaya S, Besbes S, Keskes L, El Gaied A, Turki H, Attia H, Hentati B (2007) Date seed oil limit oxidative injuries induced by hydrogen peroxide in human skin organ culture. Biofactors 29:137–145CrossRefGoogle Scholar
  54. 54.
    Elberry AA, Mufti ST, Al-Maghrabi JA, Abdel-Sattar EA, Ashour OM, Ghareib SA, Mosli HA (2011) Anti-inflammatory and antiproliferative activities of date palm pollen (Phoenix dactylifera) on experimentally-induced atypical prostatic hyperplasia in rats. J Inflamm (Lond) 8:40–53CrossRefGoogle Scholar
  55. 55.
    Mie G (1908) Beiträge zur Optik trüber Medien speziell kolloidaler Goldlö sungen contributions to the optics of diffuse media, especially colloid metal solutions. Ann Phys 25:377–445CrossRefGoogle Scholar
  56. 56.
    Gnanajobitha G, Paulkumar K, Vanaja M, Rajeshkumar S, Malarkodi C, Annadurai G, Kannan C (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostr Chem 3:1–6CrossRefGoogle Scholar
  57. 57.
    Tadros T (2012) In: Ohsima H (ed) Electrical phenomena at interfaces and biointerfaces. John Wiley & Sons, Hoboken, p 153CrossRefGoogle Scholar
  58. 58.
    Monteiro-Riviere NA, Tran CL (2014) Nanotoxicology: progress toward nanomedicine, Second Edition. CRC Press, Taylor & Francis Group, Boca Raton, p 8CrossRefGoogle Scholar
  59. 59.
    Akhavan O, Ghaderi E, Akhavan A (2012) Size dependent genotoxicity of graphene nanoplatelts in human stem cells. Biomaterials 33:8017–8025CrossRefGoogle Scholar
  60. 60.
    Hashemi E, Akhavan O, Shamsara M, Daliri M, Dashtizad M, Farmany A (2016) Synthesis and cyto-genotoxicity evalulation of graphene on mice spermatogonial stem cells. Colloids Surf B Biointerfaces 146:770–776CrossRefGoogle Scholar
  61. 61.
    Barillet S, Jugan ML, Lave M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198:324–330CrossRefGoogle Scholar
  62. 62.
    Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulagare mediated biosyntheis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B Biointerfaces 108:80–84CrossRefGoogle Scholar
  63. 63.
    Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C 58:44–52CrossRefGoogle Scholar
  64. 64.
    Periyasami VS, Athinarayanan J, Alfawaz MA, Alshatwy AA (2016) Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA, BCL2L1 genes. Chemosphere 144:275–284CrossRefGoogle Scholar
  65. 65.
    Banu H, Sethi DK, Edgar A, Sheriff A, Rayees N, Renuka N, Faheem SM, Premkumar K, Vasanthakumar G (2015) Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon hyperthermia potentiates chemotherapy in breast cancers. J Photochem Photobiol B 149:116–128CrossRefGoogle Scholar
  66. 66.
    Banu H, Stanley B, Faheem SM, Renuka N, Premkumar K, Vasanthakumar G (2014) Thermal chemosensitization of breast cancer cells to cyclophosphamide treatment using folate receptor targeted gold nanoparticles. Plasmonics 9:1341–1349CrossRefGoogle Scholar
  67. 67.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327CrossRefGoogle Scholar
  68. 68.
    Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde R, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654CrossRefGoogle Scholar
  69. 69.
    Faedmaleki F, Shirazi FH, Salarian AA, Ashtiani HA, Rastegara H (2014) Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res 13:235–242PubMedPubMedCentralGoogle Scholar
  70. 70.
    Speshock JL, Braydich-Stolle LK, Szymanski ER, Hussain SM (2011) Silver and gold nanoparticles alter cathepsin activity in vitro. Nanoscale Res Lett 6:17.  https://doi.org/10.1007/s11671-010-9746-3 CrossRefPubMedGoogle Scholar
  71. 71.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348CrossRefGoogle Scholar
  72. 72.
    Makin G, Hickman JA (2000) Apoptosis and cancer chemotherapy. Cell Tissue Res 301:143–152CrossRefGoogle Scholar
  73. 73.
    May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18:7621–7636CrossRefGoogle Scholar
  74. 74.
    Chan SL, Yu VC (2004) Proteins of the Bcl2 family in apoptosis signalling: from mechanistic insights into therapeutic oppurtunities. Clin Exp Pharmacol Physiol 31:119–128CrossRefGoogle Scholar
  75. 75.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hussaina Banu
    • 1
    • 2
  • N. Renuka
    • 3
  • S.M. Faheem
    • 1
  • Raees Ismail
    • 1
  • Vinita Singh
    • 1
  • Zahra Saadatmand
    • 1
  • Saad Sultan Khan
    • 1
  • Kavya Narayanan
    • 1
  • Alma Raheem
    • 1
  • Kumpati Premkumar
    • 2
  • Geetha Vasanthakumar
    • 4
  1. 1.School of Life SciencesManipal University Dubai Campus,DubaiUAE
  2. 2.Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical ScienceBharathidasan UniversityTiruchirappalliIndia
  3. 3.Department of Engineering, Higher Colleges of Technology, Abu Dhabi Men’s CollegeAbu DhabiUAE
  4. 4.Holistic International Testing Services FZ-LLCDubaiUAE

Personalised recommendations