Advertisement

Biological Trace Element Research

, Volume 186, Issue 1, pp 1–8 | Cite as

An Advanced Formulation of a Magnesium Dietary Supplement Adapted for a Long-Term Use Supplementation Improves Magnesium Bioavailability: In Vitro and Clinical Comparative Studies

  • Christian Dualé
  • Jean-Michel Cardot
  • Fabienne Joanny
  • Anna Trzeciakiewicz
  • Elodie Martin
  • Gisèle Pickering
  • Claude Dubray
Article

Abstract

While general recommendations are for 300-mg magnesium intake a day, an advanced low-dose formulation of magnesium chloride, ChronoMag®, was designed to provide 100 mg of magnesium element, thus decreasing the risk of gastrointestinal side effects and allowing long-term supplementation in health conditions related to low magnesium levels. The present study aimed to compare magnesium release profile and bioavailability between this patented low-dose continuous-release magnesium chloride tablet (100 mg magnesium element) and a reference tablet at the usually prescribed dose (300 mg magnesium element). Magnesium release profile was determined by dissolving the tablets in solutions simulating the gastrointestinal tract environment. A randomized double-blind crossover controlled trial of ChronoMag® versus reference tablet (3 × 100 mg magnesium element tablets) in 12 normo-magnesemic healthy volunteers was conducted to evaluate the bioavailability of the patented magnesium chloride tablets (two 50 mg magnesium tablets, once-a-day intake). While the reference tablet released 100% of its magnesium within 1 h of dissolution, release from the magnesium chloride formulation was continuous for 6 h. Cumulative urinary magnesium levels compared to those with the reference tablet were 76% (0–5 h), 89% (0–10 h), and 87% (0–24 h). Elimination after 24 h was fairly similar with both supplements. Our results suggest that the new magnesium chloride formulation, providing continuous low-dose magnesium release throughout the gastrointestinal tract, improves absorption and bioavailability. This formulation conforms to the physiological mechanism of magnesium absorption throughout the digestive tract, allowing high absorption, and may improve gastrointestinal tolerance in long-term use.

Keywords

Magnesium element Magnesium chloride Low dose Continuous release Improved absorption Long-term supplementation 

Notes

Acknowledgments

We would like to thank Pr. A. Berthelot, Dr. B. Shroot, Y. Marchenay, and Dr. Y. Juillet for their intellectual contribution to the study.

Funding Information

This study was sponsored by FJ LIFE SCIENCES.

Compliance with Ethical Standards

The randomized, double-blind, crossover, controlled trial in healthy volunteers (registration number with the French health products safety agency, ANSM: 2013-001631-43; ClinicalTrials.gov trial number: NCT01935570) was conducted in the Clinical Pharmacology Center of the University Hospital of Clermont-Ferrand (France), in compliance with the principles of the Declaration of Helsinki and following Good Clinical Practices. Review board approval (CPP Sud-Est VI, Clermont-Ferrand, France) was obtained before the start of the study. Subjects were enrolled after giving written informed consent and fulfilling inclusion and exclusion criteria. Dr. Joanny declares she is the Founder and CEO of FJ LIFE SCIENCES.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Saris NE, Mervaala E, Karppanen H et al (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta Int J Clin Chem 294:1–26CrossRefGoogle Scholar
  2. 2.
    Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7:8199–8226.  https://doi.org/10.3390/nu7095388 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rodríguez-Morán M, Simental Mendía LE, Zambrano Galván G, Guerrero-Romero F (2011) The role of magnesium in type 2 diabetes: a brief based-clinical review. Magnes Res Off Organ Int Soc Dev Res Magnes 24:156–162.  https://doi.org/10.1684/mrh.2011.0299 CrossRefGoogle Scholar
  4. 4.
    Gobbo LCD, Imamura F, Wu JH, et al (2013) Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr ajcn.053132. doi:  https://doi.org/10.3945/ajcn.112.053132, 98, 160, 173CrossRefGoogle Scholar
  5. 5.
    Sarrafzadegan N, Khosravi-Boroujeni H, Lotfizadeh M, Pourmogaddas A, Salehi-Abargouei A (2016) Magnesium status and the metabolic syndrome: a systematic review and meta-analysis. Nutr Burbank Los Angel Cty Calif 32:409–417.  https://doi.org/10.1016/j.nut.2015.09.014 CrossRefGoogle Scholar
  6. 6.
    Rude RK, Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 15:710–716.  https://doi.org/10.1016/j.jnutbio.2004.08.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM (2013) Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 5:3022–3033.  https://doi.org/10.3390/nu5083022 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Musso CG, Belloso WH, Glassock RJ (2016) Water, electrolytes, and acid-base alterations in human immunodeficiency virus infected patients. World J Nephrol 5:33–42.  https://doi.org/10.5527/wjn.v5.i1.33 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Musso CG (2009) Magnesium metabolism in health and disease. Int Urol Nephrol 41:357–362.  https://doi.org/10.1007/s11255-009-9548-7 CrossRefPubMedGoogle Scholar
  10. 10.
    Del Gobbo LC, Elin RJ, Poirier P, Egeland GM (2012) Serum magnesium: a biomarker of cardiovascular risk revisited? Magnes Res 25:49–53.  https://doi.org/10.1684/mrh.2012.0309 CrossRefPubMedGoogle Scholar
  11. 11.
    Del Gobbo LC, Song Y, Poirier P et al (2012) Low serum magnesium concentrations are associated with a high prevalence of premature ventricular complexes in obese adults with type 2 diabetes. Cardiovasc Diabetol 11:23.  https://doi.org/10.1186/1475-2840-11-23 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Simental-Mendía LE, Sahebkar A, Rodríguez-Morán M, Guerrero-Romero F (2016) A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 111:272–282.  https://doi.org/10.1016/j.phrs.2016.06.019 CrossRefPubMedGoogle Scholar
  13. 13.
    Verma H, Garg R (2017) Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk factors: a systematic review and meta-analysis. J Hum Nutr Diet n/a-n/a 30:621–633.  https://doi.org/10.1111/jhn.12454 CrossRefGoogle Scholar
  14. 14.
    Joris PJ, Plat J, Bakker SJ, Mensink RP (2016) Long-term magnesium supplementation improves arterial stiffness in overweight and obese adults: results of a randomized, double-blind, placebo-controlled intervention trial. Am J Clin Nutr 103:1260–1266.  https://doi.org/10.3945/ajcn.116.131466 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang X, Li Y, Del Gobbo LC et al (2016) Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. Hypertens Dallas Tex 1979 68:324–333.  https://doi.org/10.1161/HYPERTENSIONAHA.116.07664 CrossRefGoogle Scholar
  16. 16.
    Posadas-Sánchez R, Posadas-Romero C, Cardoso-Saldaña G, Vargas-Alarcón G, Villarreal-Molina MT, Pérez-Hernández N, Rodríguez-Pérez JM, Medina-Urrutia A, Jorge-Galarza E, Juárez-Rojas JG, Torres-Tamayo M (2016) Serum magnesium is inversely associated with coronary artery calcification in the genetics of atherosclerotic disease (GEA) study. Nutr J 15:22.  https://doi.org/10.1186/s12937-016-0143-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aydin H, Deyneli O, Yavuz D et al (2010) Short-term oral magnesium supplementation suppresses bone turnover in postmenopausal osteoporotic women. Biol Trace Elem Res 133:136–143.  https://doi.org/10.1007/s12011-009-8416-8 CrossRefPubMedGoogle Scholar
  18. 18.
    Sojka JE, Weaver CM (1995) Magnesium supplementation and osteoporosis. Nutr Rev 53:71–74CrossRefGoogle Scholar
  19. 19.
    Veronese N, Stubbs B, Solmi M, Noale M, Vaona A, Demurtas J, Maggi S (2017) Dietary magnesium intake and fracture risk: data from a large prospective study. Br J Nutr 117:1–7.  https://doi.org/10.1017/S0007114517001350 CrossRefGoogle Scholar
  20. 20.
    Abbasi B, Kimiagar M, Sadeghniiat K et al (2012) The effect of magnesium supplementation on primary insomnia in elderly: a double-blind placebo-controlled clinical trial. J Res Med Sci Off J Isfahan Univ Med Sci 17:1161Google Scholar
  21. 21.
    Killilea DW, Maier JAM (2008) A connection between magnesium deficiency and aging: new insights from cellular studies. Magnes Res 21:77–82PubMedPubMedCentralGoogle Scholar
  22. 22.
    Veronese N, Zanforlini BM, Manzato E, Sergi G (2015) Magnesium and healthy aging. Magnes Res 28:112–115.  https://doi.org/10.1684/mrh.2015.0387 CrossRefPubMedGoogle Scholar
  23. 23.
    Proctor ML, Murphy PA (2001) Herbal and dietary therapies for primary and secondary dysmenorrhoea. Cochrane Database Syst Rev CD002124. doi:  https://doi.org/10.1002/14651858.CD002124
  24. 24.
    Fathizadeh N, Ebrahimi E, Valiani M, Tavakoli N, Yar MH (2010) Evaluating the effect of magnesium and magnesium plus vitamin B6 supplement on the severity of premenstrual syndrome. Iran J Nurs Midwifery Res 15:401–405PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ebrahimi E, Khayati Motlagh S, Nemati S, Tavakoli Z (2012) Effects of magnesium and vitamin b6 on the severity of premenstrual syndrome symptoms. J Caring Sci 1:183–189.  https://doi.org/10.5681/jcs.2012.026 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stanisławska M, Szkup-Jabłońska M, Jurczak A, Wieder-Huszla S, Samochowiec A, Jasiewicz A, Noceń I, Augustyniuk K, Brodowska A, Karakiewicz B, Chlubek D, Grochans E (2014) The severity of depressive symptoms vs. serum Mg and Zn levels in postmenopausal women. Biol Trace Elem Res 157:30–35.  https://doi.org/10.1007/s12011-013-9866-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Park H, Parker GL, Boardman CH, Morris MM, Smith TJ (2011) A pilot phase II trial of magnesium supplements to reduce menopausal hot flashes in breast cancer patients. Support Care Cancer 19:859–863.  https://doi.org/10.1007/s00520-011-1099-7 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88:396–402.  https://doi.org/10.1172/JCI115317 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Institute of Medicine (1997) Food and nutrition board. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy Press, Washington, DCGoogle Scholar
  30. 30.
    Graham LA, Caesar JJ, Burgen AS (1960) Gastrointestinal absorption and excretion of Mg 28 in man. Metabolism 9:646–659PubMedGoogle Scholar
  31. 31.
    Roth P, Werner E (1979) Intestinal absorption of magnesium in man. Int J Appl Radiat Isot 30:523–526CrossRefGoogle Scholar
  32. 32.
    Coudray C, Rambeau M, Feillet-Coudray C et al (2005) Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res Off Organ Int Soc Dev Res Magnes 18:215–223Google Scholar
  33. 33.
    Firoz M, Graber M (2001) Bioavailability of US commercial magnesium preparations. Magnes Res Off Organ Int Soc Dev Res Magnes 14:257–262Google Scholar
  34. 34.
    Lindberg JS, Zobitz MM, Poindexter JR, Pak CY (1990) Magnesium bioavailability from magnesium citrate and magnesium oxide. J Am Coll Nutr 9:48–55CrossRefGoogle Scholar
  35. 35.
    Bøhmer T, Røseth A, Holm H, Weberg-Teigen S, Wahl L (1990) Bioavailability of oral magnesium supplementation in female students evaluated from elimination of magnesium in 24-hour urine. Magnes Trace Elem 9:272–278PubMedGoogle Scholar
  36. 36.
    Joanny F (2011) Use of a matrix for orally administering sustained release magnesium, and composition containing said matrixGoogle Scholar
  37. 37.
    Dissolution test for solid dosage forms. In: Eur. Pharmacopoeia, 8.0. pp 288–295Google Scholar
  38. 38.
    Sabatier M, Arnaud MJ, Kastenmayer P, Rytz A, Barclay DV (2002) Meal effect on magnesium bioavailability from mineral water in healthy women. Am J Clin Nutr 75:65–71CrossRefGoogle Scholar
  39. 39.
    Wilimzig C, Latz R, Vierling W, Mutschler E, Trnovec T, Nyulassy S (1996) Increase in magnesium plasma level after orally administered trimagnesium dicitrate. Eur J Clin Pharmacol 49:317–323CrossRefGoogle Scholar
  40. 40.
    Kayne LH, Lee DB (1993) Intestinal magnesium absorption. Miner Electrolyte Metab 19:210–217PubMedGoogle Scholar
  41. 41.
    Pearnchob N, Siepmann J, Bodmeier R (2003) Pharmaceutical applications of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets. Drug Dev Ind Pharm 29:925–938.  https://doi.org/10.1081/DDC-120024188 CrossRefPubMedGoogle Scholar
  42. 42.
    Sabatier M, Grandvuillemin A, Kastenmayer P, Aeschliman JM, Bouisset F, Arnaud MJ, Dumoulin G, Berthelot A (2011) Influence of the consumption pattern of magnesium from magnesium-rich mineral water on magnesium bioavailability. Br J Nutr 106:331–334.  https://doi.org/10.1017/S0007114511001139 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christian Dualé
    • 1
    • 2
  • Jean-Michel Cardot
    • 2
  • Fabienne Joanny
    • 3
  • Anna Trzeciakiewicz
    • 3
  • Elodie Martin
    • 3
  • Gisèle Pickering
    • 1
    • 2
  • Claude Dubray
    • 1
    • 2
  1. 1.Pharmacologie Fondamentale et Clinique de la Douleur, Neuro-DolUniversité Clermont AuvergneClermont-FerrandFrance
  2. 2.Centre de Pharmacologie Clinique / Centre d’Investigation Clinique Inserm 1405CHU Clermont-FerrandClermont-Ferrand Cedex 1France
  3. 3.FJ RECHERCHE & DEVELOPPEMENT, Research OrganizationParisFrance

Personalised recommendations