Advertisement

Biological Trace Element Research

, Volume 185, Issue 1, pp 143–147 | Cite as

Low, but Not High, Doses of Copper Sulfate Impair Synaptic Plasticity in the Hippocampal CA1 Region In Vivo

  • Abolfazl Jand
  • Mohammad Reza Taheri-nejad
  • Masoumeh Mosleh
  • Mohammad Reza Palizvan
Article
  • 76 Downloads

Abstract

Previous studies have shown the inhibitory effect of the in vitro application of copper sulfate on hippocampal long-term potentiation. While in vivo administration of copper did not affect spatial learning and memory. To find possible answers to this controversial issue, we evaluate the effect of different doses of copper sulfate on in vivo long-term potentiation, synaptic transmission, and paired-pulse behavior of CA1 pyramidal cells. Thirty-two male Wistar rats were divided into four groups: control, 5, 10, and 15 mg of copper sulfate. Field excitatory postsynaptic potential from the stratum radiatum of CA1 neurons was recorded following Schaffer collateral stimulation in rats. Spike amplitude, long-term potentiation and paired-pulse index were measured in all groups. The results of this study showed that 5 mg/kg copper sulfate increased synaptic transmission and inhibited long-term potentiation and decreased the hippocampal paired-pulse ratio, while 10 and 15 mg/kg copper sulfate did not affect CA1 synaptic transmission properties. Low, but not high, doses of copper sulfate affect synaptic plasticity. This finding may explain the difference between the effect of copper on synaptic plasticity and spatial learning and memory.

Keywords

Copper sulfate Long-term potentiation Synaptic transmission Hippocampus 

Notes

Funding Information

Financial support for this study was provided by Deputy Vice-chancellor of research on Arak University of Medical Sciences Grant # 628.

Compliance with Ethical Standards

Ethical Approval

Ethical approval for the study was provided by the Arak University of Medical Sciences Research Ethics Committee # 89-80-3.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fujiwara N, Iso H, Kitanaka N, Kitanaka J, Eguchi H, Ookawara T, Ozawa K, Shimoda S, Yoshihara D, Takemura M, Suzuki K (2006) Effects of copper metabolism on neurological functions in Wistar and Wilson’s disease model rats. Biochem Biophys Res Commun 349(3):1079–1086.  https://doi.org/10.1016/j.bbrc.2006.08.139 CrossRefPubMedGoogle Scholar
  2. 2.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S–811SPubMedGoogle Scholar
  3. 3.
    Das SK, Ray K (2006) Wilson’s disease: an update. Nat Clin Pract Neurol 2(9):482–493.  https://doi.org/10.1038/ncpneuro0291 CrossRefPubMedGoogle Scholar
  4. 4.
    Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044.  https://doi.org/10.1021/cr040410w CrossRefPubMedGoogle Scholar
  5. 5.
    Vaz FNC, Fermino BL, Haskel MVL, Wouk J, de Freitas GBL, Fabbri R, Montagna E, Rocha JBT, Bonini JS (2017) The relationship between copper, iron, and selenium levels and Alzheimer disease. Biol Trace Elem Res:1–7.  https://doi.org/10.1007/s12011-017-1042-y
  6. 6.
    Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6(4):221–230.  https://doi.org/10.1006/nbdi.1999.0250 CrossRefPubMedGoogle Scholar
  7. 7.
    Becker JT, Walker JA, Olton DS (1980) Neuroanatomical bases of spatial memory. Brain Res 200(2):307–320.  https://doi.org/10.1016/0006-8993(80)90922-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290.  https://doi.org/10.1016/j.neuron.2016.12.015 CrossRefPubMedGoogle Scholar
  9. 9.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136.  https://doi.org/10.1152/physrev.00014.2003 CrossRefPubMedGoogle Scholar
  10. 10.
    Lynch G, Cox CD, Gall CM (2014) Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 8:90.  https://doi.org/10.3389/fnsys.2014.00090 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15(3):181–192.  https://doi.org/10.1038/nrn3677 CrossRefPubMedGoogle Scholar
  12. 12.
    Baudry M, Zhu G, Liu Y, Wang Y, Briz V, Bi X (2015) Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Res 1621:73–81.  https://doi.org/10.1016/j.brainres.2014.11.033 CrossRefPubMedGoogle Scholar
  13. 13.
    Doreulee N, Yanovsky Y, Haas HL (1997) Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus 7(6):666–669.  https://doi.org/10.1002/(SICI)1098-1063(1997)7:6<666::AID-HIPO8>3.0.CO;2-C CrossRefPubMedGoogle Scholar
  14. 14.
    Kapkaeva MR, Popova OV, Kondratenko RV, Rogozin PD, Genrikhs EE, Stelmashook EV, Skrebitsky VG, Khaspekov LG, Isaev NK (2017) Effects of copper on viability and functional properties of hippocampal neurons in vitro. Exp Toxicol Pathol 69(5):259–264.  https://doi.org/10.1016/j.etp.2017.01.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 1256:69–75.  https://doi.org/10.1016/j.brainres.2008.12.041 CrossRefPubMedGoogle Scholar
  16. 16.
    Palizvan MR, Jand A, Jand Y, Taherinejad MR (2016) A study on the effects of orally administered copper sulfate on learning and spatial memory of wistar rats. J Babol Univ Med Sci 18(1):31–36.  https://doi.org/10.22088/jbums.18.1.31 Google Scholar
  17. 17.
    Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates. Elsevier, Academic PressGoogle Scholar
  18. 18.
    Yorns W Jr, Blaise J, Bronzino J (2004) Frequency-dependent changes in the paired-pulse index in the hippocampus of the freely moving adult male rat. Exp Neurol 186(1):104–108.  https://doi.org/10.1016/j.expneurol.2003.09.022 CrossRefPubMedGoogle Scholar
  19. 19.
    Goldschmith A, Infante C, Leiva J, Motles E, Palestini M (2005) Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus. Brain Res 1056(2):176–182.  https://doi.org/10.1016/j.brainres.2005.07.030 CrossRefPubMedGoogle Scholar
  20. 20.
    Leiva J, Gaete P, Palestini M (2003) Copper interaction on the long-term potentiation. Arch Ital Biol 141(4):149–155PubMedGoogle Scholar
  21. 21.
    Vlachová V, Zemková H, Vyklický L (1996) Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur J Neurosci 8(11):2257–2264.  https://doi.org/10.1111/j.1460-9568.1996.tb01189.x CrossRefPubMedGoogle Scholar
  22. 22.
    Weiser T, Wienrich M (1996) The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res 742(1–2):211–218.  https://doi.org/10.1016/S0006-8993(96)01009-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Collingridge GL (2003) The induction of N-methyl-D-aspartate receptor-dependent long-term potentiation. Philos Trans R Soc Lond Ser B Biol Sci 358(1432):635–641.  https://doi.org/10.1098/rstb.2002.1241 CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Lu W, Han M, Li H, Luo H, Li W, Luo W, Lin Z (2016) Biphasic effects of copper on rat learning and memory in the Morris water maze. Ann Clin Lab Sci 46(4):346–352PubMedGoogle Scholar
  25. 25.
    Plech A, Klimkiewicz T, Jakrzewska H (2000) Neurotoxic effect of copper salts in rats. Pol J Environ Stud 9(4):301–304Google Scholar
  26. 26.
    Margineanu DG, Wulfert E (2000) Differential paired-pulse effects of gabazine and bicuculline in rat hippocampal CA3 area. Brain Res Bull 51(1):69–74.  https://doi.org/10.1016/S0361-9230(99)00209-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Stanford IM, Wheal HV, Chad JE (1995) Bicuculline enhances the late GABAB receptor-mediated paired-pulse inhibition observed in rat hippocampal slices. Eur J Pharmacol 277(2–3):229–234.  https://doi.org/10.1016/0014-2999(95)00083-W CrossRefPubMedGoogle Scholar
  28. 28.
    Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424(1):513–531.  https://doi.org/10.1113/jphysiol.1990.sp018080 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zeng X, Tietz EI (1997) Depression of early and late monosynaptic inhibitory postsynaptic potentials in hippocampal CA1 neurons following prolonged benzodiazepine administration: role of a reduction in Cl-driving force. Synapse 25(2):125–136.  https://doi.org/10.1002/(SICI)1098-2396(199702)25:2<125::AID-SYN3>3.0.CO;2-E

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abolfazl Jand
    • 1
  • Mohammad Reza Taheri-nejad
    • 1
  • Masoumeh Mosleh
    • 1
  • Mohammad Reza Palizvan
    • 1
  1. 1.Department of Physiology, Faculty of MedicineArak University of Medical SciencesArakIran

Personalised recommendations