Biological Trace Element Research

, Volume 185, Issue 1, pp 78–88 | Cite as

Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS

  • Jian LuEmail author
  • Miaomiao Tang
  • Yi Liu
  • Jin Wang
  • Zhanao WuEmail author


Chromium (Cr) is a highly toxic, common heavy metal used in industrial production. There are two types of Cr in nature: hexavalent chromium (Cr(VI)) and chromium trichloride (Cr(III)). Cr(III) is involved in the metabolism of sugars and lipids, whereas Cr(VI) is absorbed through the respiratory tract and skin and generates free radicals that result in secondary toxicity. Cr(VI) leads to cancer in the occupational population and is therefore recognized as a human carcinogen by the International Agency for Research on Cancer. The specific mechanism underlying Cr-induced carcinogenesis is complex. In this study, two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry-based techniques were performed to analyze differentially expressed proteins between Beas-2B human bronchial epithelial cells and Cr(VI)-transformed Beas-2B cells. Many differentially expressed proteins were identified in the cells after malignant transformation, including serine/threonine kinase 11, endothelial nitric oxide synthase 3, apolipoprotein A1, vinculin, and lamin A/C. These proteins are involved in many signaling and metabolic pathways, including apoptosis, autophagy, the PI3K/Akt signaling pathway, focal adhesion, cell motility, and actin cytoskeleton rearrangement.


Chromium Immortalized normal human bronchial epithelial cells Transformation Lung cancer 2D-DIGE MALDI TOF/TOF MS 



This work was supported by grants from the National Natural Science Foundation of China (No. 31271272) and the Nanjing 321 Plan (No. 2013A12001). We thank LetPub ( for its linguistic assistance during the preparation of this manuscript.

Compliance with Ethical Standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Seidler A, Jahnichen S, Hegewald J et al. (2013) Reply to: Pesch B, Weiss T, Pallapies D, Schluter G, Bruning T. Letter to the editor. Re: Seidler A, Jahnichen S, Hegewald J, Fishta A, Krug O, Ruter L, Strik C, Hallier E, Straube S. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occup Environ Health 86:961–963, 8, DOI:
  2. 2.
    Voitkun V, Zhitkovich A, Costa M (1998) Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26(8):2024–2030. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 18(1):3–11. CrossRefPubMedGoogle Scholar
  4. 4.
    Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics: integrated biometal science 1:222–228Google Scholar
  5. 5.
    Matthews JO, Southern LL, Fernandez JM, Pontif JE, Bidner TD, Odgaard RL (2001) Effect of chromium picolinate and chromium propionate on glucose and insulin kinetics of growing barrows and on growth and carcass traits of growing-finishing barrows. J Anim Sci 79(8):2172–2178. CrossRefPubMedGoogle Scholar
  6. 6.
    Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188(2):276–288. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tossavainen A (1990) Estimated risk of lung cancer attributable to occupational exposures in iron and steel foundries. IARC Sci Publ:363–367Google Scholar
  8. 8.
    Morgensztern D, Ng SH, Gao F et al (2010) Trends in stage distribution for patients with non-small cell lung cancer: a National Cancer Database Survey. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer 5:29–33Google Scholar
  9. 9.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. CrossRefPubMedGoogle Scholar
  10. 10.
    Ettinger DS, Akerley W, Borghaei H et al. (2012) Non-small cell lung cancer. J Natl Compr Canc Netw Jnccn 10:1236Google Scholar
  11. 11.
    Siegel R, Ma J, Zou Z et al (2015) Cancer statistics, 2014. CA Cancer J Clin 63:11–30CrossRefGoogle Scholar
  12. 12.
    Johnson DH, Schiller JH, Jr BP (2014) Recent clinical advances in lung cancer management. J Clin Oncol Off J Am Soc Clin Oncol 32(10):973–982. CrossRefGoogle Scholar
  13. 13.
    Park YH, Kim D, Dai J et al (2015) Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol 287(3):240–245. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sakthivel KM, Sehgal P (2016) A novel role of lamins from genetic disease to cancer biomarkers. Oncol Rev 10(2).
  15. 15.
    Shimi T, Pfleghaar K, S, Pack C et al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409, 24, 3421, DOI:
  16. 16.
    Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14(1):13–24. CrossRefPubMedGoogle Scholar
  17. 17.
    Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS, Ramaekers FC (1993) Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am J Pathol 143(1):211–220PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kaspi E, Frankel D, Guinde J, Perrin S, Laroumagne S, Robaglia-Schlupp A, Ostacolo K, Harhouri K, Tazi-Mezalek R, Micallef J, Dutau H, Tomasini P, de Sandre-Giovannoli A, Lévy N, Cau P, Astoul P, Roll P (2017) Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor performance status. PLoS One 12(8):e0183136. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lei T, He QY, Cai Z, Zhou Y, Wang YL, Si LS, Cai Z, Chiu JF (2008) Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells. Proteomics 8(12):2420–2429. CrossRefPubMedGoogle Scholar
  20. 20.
    Kim D, Dai J, Yenwong FL et al (2015) Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development. J Biol Chem 290(4):2213–2224. CrossRefPubMedGoogle Scholar
  21. 21.
    Bruno M, Ross J, Ge Y (2016) Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: protein indicators of cytotoxicity conversion. Toxicol Lett 264:59–70. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang E, Hatada M, Brewer JM, Lebioda L (1994) Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution. Biochemistry 33(20):6295–6300. CrossRefPubMedGoogle Scholar
  23. 23.
    Braga F, Ferraro S, Mozzi R, Dolci A, Panteghini M (2013) Biological variation of neuroendocrine tumor markers chromogranin A and neuron-specific enolase. Clin Biochem 46(1-2):148–151. CrossRefPubMedGoogle Scholar
  24. 24.
    Yan HJ, Tan Y, Gu W (2014) Neuron specific enolase and prognosis of non-small cell lung cancer: a systematic review and meta-analysis. J BUON: Off J Balkan Union Oncol 19:153–156Google Scholar
  25. 25.
    Atherton P, Stutchbury B, Jethwa D, Ballestrem C (2016) Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res 343(1):21–27. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ezzell RM, Goldmann WH, Wang N, Parashurama N, Ingber DE (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231(1):14–26. CrossRefPubMedGoogle Scholar
  27. 27.
    Chen H, Choudhury DM, Craig SW (2006) Coincidence of actin filaments and talin is required to activate vinculin. J Biol Chem 281(52):40389–40398. CrossRefPubMedGoogle Scholar
  28. 28.
    Mierke CT, Rosel D, Fabry B et al (2008) Contractile forces in tumor cell migration. Eur J Cell Biol 87(8-9):669–676. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179(5):1043–1057. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Thakur RK, Yadav VK, Kumar A, Singh A, Pal K, Hoeppner L, Saha D, Purohit G, Basundra R, Kar A, Halder R, Kumar P, Baral A, Kumar MJM, Baldi A, Vincenzi B, Lorenzon L, Banerjee R, Kumar P, Shridhar V, Mukhopadhyay D, Chowdhury S (2014) Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin. Nucleic Acids Res 42(18):11589–11600. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tada A, Kato H, Takenaga K, Hasegawa S (1997) Transforming growth factor beta1 increases the expressions of high molecular weight tropomyosin isoforms and vinculin and suppresses the transformed phenotypes in human lung carcinoma cells. Cancer Lett 121(1):31–37. CrossRefPubMedGoogle Scholar
  32. 32.
    Gill RK, Yang SH, Meerzaman D, Mechanic LE, Bowman ED, Jeon HS, Roy Chowdhuri S, Shakoori A, Dracheva T, Hong KM, Fukuoka J, Zhang JH, Harris CC, Jen J (2011) Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene 30(35):3784–3791. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Roy BC, Kohno TR, Moriguchi T et al (2010) Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung cancer (Amsterdam, Netherlands) 70(2):136–145. CrossRefGoogle Scholar
  34. 34.
    Han D, Li SJ, Zhu YT, Liu L, Li MX (2013) LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer. Asian Pac J Cancer Prev Apjcp 14(7):4033–4039. CrossRefPubMedGoogle Scholar
  35. 35.
    Ekizoglu S, Dogan S, Ulker D, Seven D, Gozen ED, Karaman E, Buyru N (2015) The effect of LKB1 on the PI3K/Akt pathway activation in association with PTEN and PIK3CA in HNC. Clin Otolaryngolog: Off J ENT-UK; Off J Netherlands Soc Oto-Rhino-Laryngol Cervico-Facial Surg 40(6):622–628. CrossRefGoogle Scholar
  36. 36.
    Liu K, Luo Y, Tian H, Yu KZ, He JX, Shen WY (2014) The tumor suppressor LKB1 antagonizes WNT signaling pathway through modulating GSK3β activity in cell growth of esophageal carcinoma. Tumour Biol J Int Soc Oncodev Biol Med 35(2):995–1002. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Life SciencesJiangsu UniversityZhenjiangChina
  2. 2.School of MedicineJiangsu UniversityZhenjiangChina
  3. 3.Nanjing Military Region Stomatological Center, No. 359 Hospital, the People’s Liberation ArmyZhenjiangChina

Personalised recommendations