Biological Trace Element Research

, Volume 185, Issue 1, pp 1–10 | Cite as

Anemia and Iron Status Among Different Body Size Phenotypes in Chinese Adult Population: a Nation-Wide, Health and Nutrition Survey

  • Jiang LiEmail author
  • Cheng Xiao
  • Hui Yang
  • Yun Zhou
  • Rui Wang
  • Yongtong CaoEmail author


Previous studies have shown that there is a controversial relationship between iron homeostasis and obesity. This study aims to explore the relationship of anemia and iron status with different body size phenotypes in adult Chinese population. Using information on iron status-related parameters and lifestyle data from 8462 participants of the 2009 wave of China Health and Nutrition Survey (2009 CHNS), we performed multivariable logistic regression analyses to estimate the odds ratios (ORs) for the risk of anemia and iron parameters according to different body size phenotypes. Participants with higher body mass index (BMI) had a lower anemia prevalence with significant trends in both metabolic status groups (P < 0.001). Serum ferritin, transferrin, and soluble transferrin receptor (sTfR)/log ferritin index were significant in different metabolic status groups and in different body size phenotypes, respectively. The ORs for higher ferritin and transferrin increased across different body size phenotypes in both genders, and for sTfR/log ferritin index decreased (P < 0.01 for trend). This association was still statistically significant after adjustment for multiple confounders. We found an inverse association of BMI levels with the prevalence of anemia and strong association of serum ferritin and transferrin with higher risk of obesity or overweight in both metabolic status groups.


Anemia Obesity Body mass index 



We thank all the participants in China and the USA who have been involved in the China Health and Nutrition Survey, the blood sample test work, and the related pilot studies. This research uses data from the China Health and Nutrition Survey (CHNS). We thank the National Institute of Nutrition and Food Safety, the China Center for Disease Control and Prevention, the Carolina Population Center (5 R24 HD050924) at the University of North Carolina at Chapel Hill, the NIH (R01-HD30880, DK056350, R24 HD050924, and R01-HD38700), and the Fogarty International Center of the NIH for the financial support of the CHNS data collection and analysis files from 1989 to 2011 and future surveys, and the China-Japan Friendship Hospital, Ministry of Health, for the support of the 2009 CHNS. This study was also supported by the National Science Foundation of China (Nos. 81400356 and 81373773), the International Cooperation Project of the Ministry of Science and Technology (No. 2014DFA31490), and the China-Japan Friendship Hospital Youth Science and Technology Excellence Project (No. 2015-QNYC-B-11).

Author Contributions

Study design: Jiang Li.

Data collection and analysis: Hui Yang, Yun Zhou.

Manuscript preparation: Jiang Li, Yongtong Cao, Rui Wang, Cheng Xiao.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12011_2017_1213_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)


  1. 1.
    Jian-Hua P, Lai JQ, Yin SA, Jie XU, Qing-Mei XU, Yang XG (2005) Study on the anemia status of Chinese population. Acta Nutrimenta Sinica 27(4):268–267Google Scholar
  2. 2.
    Yichun H, Jing C, Min L, Weidong L, Yanhua Y, Lichen Y, Rui W, Jianhua P (2016) Study on the anemia status of Chinese urban residents in 2010–2012. Chin J Prev Med 50(3):213–216Google Scholar
  3. 3.
    Yang W, Xiao J, Yang Z, Ji L, Jia W, Weng J, Lu J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J (2012) Serum lipids and lipoproteins in Chinese men and women. Circulation 125(18):2212–2221. CrossRefPubMedGoogle Scholar
  4. 4.
    Yan S, Li J, Li S, Zhang B, Du S, Gordon-Larsen P, Adair L, Popkin B (2012) The expanding burden of cardiometabolic risk in China: the China Health and Nutrition Survey. Obes Revi : Off J Int Assoc Study of Obes 13(9):810–821. CrossRefGoogle Scholar
  5. 5.
    Wenying Y (2010) Concern about the present status of diabetes & take positive action. Indian J Med Res 132:475–477PubMedPubMedCentralGoogle Scholar
  6. 6.
    Collaborators GO (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377(1):13–27. CrossRefGoogle Scholar
  7. 7.
    Webber L, Kilpi F, Marsh T, Rtveladze K, Brown M, Mcpherson K (2012) High rates of obesity and non-communicable diseases predicted across Latin America. PLoS One 7(8):e39589. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV (2015) Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 30:207–214. CrossRefPubMedGoogle Scholar
  9. 9.
    Becker C, Orozco M, Solomons NW, Schümann K (2015) Iron metabolism in obesity: how interaction between homoeostatic mechanisms can interfere with their original purpose Part I: underlying homoeostatic mechanisms of energy storage and iron metabolisms and their interaction. J Trace Elem Med Biol 30:195–201. CrossRefPubMedGoogle Scholar
  10. 10.
    Becker C, Orozco M, Solomons NW, Schümann K (2015) Iron metabolism in obesity: how interaction between homoeostatic mechanisms can interfere with their original purpose. Part II: epidemiological and historic aspects of the iron/obesity interaction. J Trace Elem Med Biol 30:202–206. CrossRefPubMedGoogle Scholar
  11. 11.
    Manios Y, Moschonis G, Chrousos GP, Lionis C, Mougios V, Kantilafti M, Tzotzola V, Skenderi KP, Petridou A, Tsalis G, Sakellaropoulou A, Skouli G, Katsarou C (2013) The double burden of obesity and iron deficiency on children and adolescents in Greece: the Healthy Growth Study. J Human Nutr Diet : Off J Br Diet Assoc 26(5):470–478. CrossRefGoogle Scholar
  12. 12.
    del Giudice EM, Santoro N, Amato A, Brienza C, Calabro P, Wiegerinck ET, Cirillo G, Tartaglione N, Grandone A, Swinkels DW, Perrone L (2009) Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab 94(12):5102–5107. CrossRefPubMedGoogle Scholar
  13. 13.
    Moayeri H, Bidad K, Zadhoush S, Gholami N, Anari S (2006) Increasing prevalence of iron deficiency in overweight and obese children and adolescents (Tehran Adolescent Obesity Study). Eur J Pediatr 165(11):813–814. CrossRefPubMedGoogle Scholar
  14. 14.
    Wenzel BJ, Stults HB, Mayer J (1962) Hypoferraemia in obese adolescents. Lancet 2(7251):327–328CrossRefPubMedGoogle Scholar
  15. 15.
    Seltzer CC, Mayer J (1963) Serum iron and iron-binding capacity in adolescents. Ii. Comparison of obese and nonobese subjects. Am J Clin Nutr 13:354–361CrossRefPubMedGoogle Scholar
  16. 16.
    Cepeda-Lopez AC, Osendarp SJ, Melse-Boonstra A, Aeberli I, Gonzalez-Salazar F, Feskens E, Villalpando S, Zimmermann MB (2011) Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am J Clin Nutr 93(5):975–983. CrossRefPubMedGoogle Scholar
  17. 17.
    Love AL, Billett HH (2008) Obesity, bariatric surgery, and iron deficiency: true, true, true and related. Am J Hematol 83(5):403–409. CrossRefPubMedGoogle Scholar
  18. 18.
    Andrews M, Soto N, Arredondo-Olguin M (2015) Association between ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus and obesity. Nutrition 31(1):51–57. CrossRefPubMedGoogle Scholar
  19. 19.
    Ansari I, Sheikh A, Ahmed SS, Jabbar Q, Ali S (2014) Management of anemia and other hematologic derangements in patients with chronic kidney disease. Arab J Nephrol Trans 7(1):13–19Google Scholar
  20. 20.
    Jeon YJ, Jung IA, Kim SH, Cho WK, Jeong SH, Cho KS, Park SH, Jung MH, Suh BK (2013) Serum ferritin level is higher in male adolescents with obesity: results from the Korean National Health and Nutrition Examination Survey 2010. Ann Pediatr Endocrinol Metab 18(3):141–147. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Luan de C, Li H, Li SJ, Zhao Z, Li X, Liu ZM (2008) Body iron stores and dietary iron intake in relation to diabetes in adults in north China. Diabetes Care 31(2):285–286. CrossRefPubMedGoogle Scholar
  22. 22.
    Akter S, Nanri A, Kuwahara K, Matsushita Y, Nakagawa T, Konishi M, Honda T, Yamamoto S, Hayashi T, Noda M, Mizoue T (2017) Circulating ferritin concentrations and risk of type 2 diabetes in Japanese individuals. J Diabetes Invest 8(4):462–470. CrossRefGoogle Scholar
  23. 23.
    Popkin BM, Du S, Zhai F, Zhang B (2009) Cohort profile: the China Health and Nutrition Survey—monitoring and understanding socio-economic and health change in China, 1989–2011. Int J Epidemiol 39(6):1435–1440. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Popkin B, Keyou G, Zhai F, Guo X, Ma H, Zohoori N (1993) The nutrition transition in China: a cross-sectional analysis. Eur J Clin Nutr 47(5):333–346PubMedGoogle Scholar
  25. 25.
    Tudor-Locke C, Ainsworth BE, Adair LS, Du S, Popkin BM (2003) Physical activity and inactivity in Chinese school-aged youth: the China Health and Nutrition Survey. Int J Obes 27(9):1093–1099. CrossRefGoogle Scholar
  26. 26.
    Du T, Zhang J, Yuan G, Zhang M, Zhou X, Liu Z, Sun X, Yu X (2015) Nontraditional risk factors for cardiovascular disease and visceral adiposity index among different body size phenotypes. Nutr Metab Cardiovasc Dis : NMCD 25(1):100–107. CrossRefPubMedGoogle Scholar
  27. 27.
    Liao M, Huang X, Gao Y, Tan A, Lu Z, Wu C, Zhang Y, Yang X, Zhang H, Qin X (2012) Testosterone is associated with erectile dysfunction: a cross-sectional study in Chinese men. PLoS One 7(6):e39234. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alizadeh S, Mirzaei K, Mohammadi C, Keshavarz SA, Maghbooli Z (2017) Circulating omentin-1 might be associated with metabolic health status in different phenotypes of body size. Arch Endocrinol Metab.
  29. 29.
    Wildman RP, Kaplan R, Manson JE, Rajkovic A, Connelly SA, Mackey RH, Tinker LF, Curb JD, Eaton CB, Wassertheil-Smoller S (2011) Body size phenotypes and inflammation in the Women’s Health Initiative Observational Study. Obesity (Silver Spring) 19(7):1482–1491. CrossRefGoogle Scholar
  30. 30.
    De Benoist B, McLean E, Egli I, Cogswell M (2008) Worldwide prevalence of anaemia 1993–2005. World Health Organization, Geneva, pp 41Google Scholar
  31. 31.
    Control CfD, Prevention (1998) Recommendations to prevent and control iron deficiency in the United States. Mmwr Morbidity and Mortality Weekly Report. 47(RR-3):i–iii,1–29Google Scholar
  32. 32.
    Qin Y, Melse-Boonstra A, Pan X, Yuan B, Dai Y, Zhao J, Zimmermann MB, Kok FJ, Zhou M, Shi Z (2013) Anemia in relation to body mass index and waist circumference among Chinese women. Nutr J 12(1):10. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chang JS, Chen YC, Owaga E, Palupi KC, Pan WH, Bai CH (2014) Interactive effects of dietary fat/carbohydrate ratio and body mass index on iron deficiency anemia among Taiwanese women. Nutrients 6(9):3929–3941. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao HQ, Wu H, Meng R, Du S, Tao SJ (2015) Distribution of serum transferrin, and its associations with metabolic disorders among Chinese: a nation-wide, health and nutrition survey. Mol Nutr Food Res 59(8):1535–1540. CrossRefPubMedGoogle Scholar
  35. 35.
    Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M (2004) Overweight children and adolescents: a risk group for iron deficiency. Pediatrics 114(1):104–108. CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng HL, Bryant C, Cook R, O'Connor H, Rooney K, Steinbeck K (2012) The relationship between obesity and hypoferraemia in adults: a systematic review. Obes Rev : Off J Int Assoc Study of Obes 13(2):150–161. CrossRefGoogle Scholar
  37. 37.
    Becker C, Schumann K (2015) Iron-homeostasis and obesity. J Trace Elem Med Biol 30:194. CrossRefPubMedGoogle Scholar
  38. 38.
    Zhan Y, Chen R, Zheng W, Guo C, Lu L, Ji X, Chi Z, Yu J (2014) Association between serum magnesium and anemia: china health and nutrition survey. Biol Trace Elem Res 159(1–3):39–45. CrossRefPubMedGoogle Scholar
  39. 39.
    Gartner A, Berger J, Bour A, El Ati J, Traissac P, Landais E, El Kabbaj S, Delpeuch F (2013) Assessment of iron deficiency in the context of the obesity epidemic: importance of correcting serum ferritin concentrations for inflammation. Am J Clin Nutr 98(3):821–826. CrossRefPubMedGoogle Scholar
  40. 40.
    Cepeda-Lopez AC, Aeberli I, Zimmermann MB (2010) Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. International journal for vitamin and nutrition research Internationale Zeitschrift fur vitamin- und Ernahrungsforschung journal international de vitaminologie et de. Nutrition 80(4–5):263–270. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, China-Japan Friendship HospitalBeijingChina
  2. 2.China-Japan Friendship HospitalInstitute of Clinical MedicineBeijingChina
  3. 3.Blood Screening Laboratory, Beijing Red Cross Blood CenterBeijingChina

Personalised recommendations