Advertisement

Biological Trace Element Research

, Volume 184, Issue 2, pp 422–435 | Cite as

Acetyl-l-Carnitine Attenuates Arsenic-Induced Oxidative Stress and Hippocampal Mitochondrial Dysfunction

  • Hedieh Keshavarz-Bahaghighat
  • Mohammad Reza Sepand
  • Mohammad Hossein Ghahremani
  • Mehdi Aghsami
  • Nima Sanadgol
  • Ameneh Omidi
  • Vida Bodaghi-Namileh
  • Omid Sabzevari
Article

Abstract

Augmentation of mitochondrial oxidative stress through activating a series of deadly events has implicated as the main culprit of arsenic toxicity and therapeutic approaches based on improving mitochondrial function hold a great promise for attenuating the arsenic-induced toxicity. Acetyl-l-carnitine (ALC) through balancing the coenzyme A (CoA)/acyl-CoA ratio plays an important role in mitochondrial metabolism and thereby can help protect hippocampal neurons from oxidative damage. In the present study, we aimed to explore the effect of arsenic interactions on the mitochondrial function in the hippocampus of rats. Rats were randomly divided into five groups of control (distilled water), sodium arsenite (NaAsO2, 20 mg/kg), and co-treatment of NaAsO2 with various doses of ALC in three groups (100, 200, 300 mg/kg) and were treated orally for 21 consecutive days. Our results point out that arsenic exposure caused oxidative stress in rats’ hippocampus, which led to the reactive oxygen species (ROS) generation, mitochondrial swelling, the collapse of the mitochondrial membrane potential, and release of cytochrome c. It also altered Bcl-2/Bax expression ratio and increased caspase-3 and caspase-9 activities. Furthermore, arsenic exposure via activation of NF-κB and microglia increased inflammation. ALC could concentration-dependently counteract the arsenic-induced oxidative stress, modulate the antioxidant defense capacity, and improve mitochondrial functions. In addition, ALC decreased the expression of both death-associated proteins and of inflammatory markers. These findings indicate that ALC improved the arsenic-induced hippocampal mitochondrial dysfunction which underlines the importance of ALC in providing a possible therapeutic strategy for the prevention of arsenic-induced neurodegeneration.

Keywords

Arsenic Acetyl-l-carnitine Hippocampus Oxidative stress Inflammation 

Notes

Funding Information

This publication and work are based on studies sponsored and funded by vice chancellor for research (Project No. 31789), Tehran University of Medical Sciences, Tehran, Iran.

Compliance with Ethical Standards

All experiments were carried out in accordance with the guidelines of the Ethical Committee for the Use and Care of Laboratory Animals, Tehran University of Medical Sciences (Tehran, Iran).

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Abdul HM, Butterfield DA (2007) Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and α-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Free Radic Biol Med 42(3):371–384.  https://doi.org/10.1016/j.freeradbiomed.2006.11.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Bielefeld EC, Coling D, Chen G-D, Henderson D (2008) Multiple dosing strategies with acetyl L-carnitine (ALCAR) fail to alter age-related hearing loss in the Fischer 344/NHsd rat. J Negat Results in Biomed 7(1):4.  https://doi.org/10.1186/1477-5751-7-4 CrossRefGoogle Scholar
  3. 3.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Buege JA, Aust SD (1978) [30] Microsomal lipid peroxidation. Methods Enzymol 52:302–310.  https://doi.org/10.1016/S0076-6879(78)52032-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203.  https://doi.org/10.1016/0003-2697(81)90281-5 CrossRefPubMedGoogle Scholar
  6. 6.
    Carta A, Calvani M, Bravi D, Bhuachalla S (1993) Acetyl-l-carnitine and Alzheimer’s disease: pharmacological considerations beyond the cholinergic sphere. Ann N Y Acad Sci 695(1):324–326.  https://doi.org/10.1111/j.1749-6632.1993.tb23077.x CrossRefPubMedGoogle Scholar
  7. 7.
    Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44(6):587–604.  https://doi.org/10.3109/10715761003709802 CrossRefPubMedGoogle Scholar
  8. 8.
    Choong TS, Chuah T, Robiah Y, Koay FG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1-3):139–166.  https://doi.org/10.1016/j.desal.2007.01.015 CrossRefGoogle Scholar
  9. 9.
    Di Cesare Mannelli L, Ghelardini C, Calvani M, Nicolai R, Mosconi L, Vivoli E, Pacini A, Bartolini A (2007) Protective effect of acetyl-l-carnitine on the apoptotic pathway of peripheral neuropathy. Eur J Neurosci 26(4):820–827.  https://doi.org/10.1111/j.1460-9568.2007.05722.x CrossRefPubMedGoogle Scholar
  10. 10.
    Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51(2):257–281.  https://doi.org/10.1016/j.freeradbiomed.2011.04.008 CrossRefPubMedGoogle Scholar
  11. 11.
    Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(12):2745–2788.  https://doi.org/10.3390/ijerph7072745 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, Bhattacharya S, Kandjanapa K, Soontararuks S, Nookabkaew S, Mahidol C, Ruchirawat M, Samson LD (2007) Activation of inflammation/NF-κB signaling in infants born to arsenic-exposed mothers. PLoS Genet 3(11):e207.  https://doi.org/10.1371/journal.pgen.0030207 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Galluzzi L, Zamzami N, Rouge TDLM, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12(5):803–813.  https://doi.org/10.1007/s10495-007-0720-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Hosseini M-J, Shaki F, Ghazi-Khansari M, Pourahmad J (2013a) Toxicity of arsenic (III) on isolated liver mitochondria: a new mechanistic approach. Iran J Pharm Res: IJPR 12(Suppl):121–138PubMedGoogle Scholar
  15. 15.
    Hosseini M-J, Shaki FS, Ghazi-Khansari M, Pourahmad J (2013b) Toxicity of arsenic (III) on isolated liver mitochondria: a new mechanistic approach. Iran J Pharm Res 12(Suppl):121–138PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kadirvel R, Sundaram K, Mani S, Samuel S, Elango N, Panneerselvam C (2007) Supplementation of ascorbic acid and α-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Human Exp Toxicol 26(12):939–946.  https://doi.org/10.1177/0960327107087909 CrossRefGoogle Scholar
  17. 17.
    Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926.  10.18632/oncotarget.14733 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kosnett MJ (2013) The role of chelation in the treatment of arsenic and mercury poisoning. In: J Med Toxicol, vol 4. Springer, p 347–354Google Scholar
  19. 19.
    Luo J-H, Qiu Z-Q, Shu W-Q, Zhang Y-Y, Zhang L, Chen J-A (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184(2):121–125.  https://doi.org/10.1016/j.toxlet.2008.10.029 CrossRefPubMedGoogle Scholar
  20. 20.
    Malaguarnera M, Gargante MP, Russo C, Antic T, Vacante M, Malaguarnera M, Avitabile T, Li Volti G, Galvano F (2010) L-carnitine supplementation to diet: a new tool in treatment of nonalcoholic steatohepatitis—a randomized and controlled clinical trial. Am J Gastroenterol 105(6):1338–1345.  https://doi.org/10.1038/ajg.2009.719 CrossRefPubMedGoogle Scholar
  21. 21.
    Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234.  https://doi.org/10.1021/es0259842 CrossRefPubMedGoogle Scholar
  22. 22.
    Mishra D, Mehta A, Flora SJ (2007) Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chem Res Toxicol 21(2):400–407.  https://doi.org/10.1021/tx700315a CrossRefPubMedGoogle Scholar
  23. 23.
    Muthumani M, Miltonprabu S (2015) Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chem Biol Interact 235:95–105.  https://doi.org/10.1016/j.cbi.2015.04.006 CrossRefPubMedGoogle Scholar
  24. 24.
    Neves RNPD, Carvalho F, Carvalho M, Fernandes E, Soares E, Bastos MDL, Pereira MDL (2004) Protective activity of hesperidin and lipoic acid against sodium arsenite acute toxicity in mice. Toxicol Pathol 32(5):527–535.  https://doi.org/10.1080/01926230490502566 CrossRefPubMedGoogle Scholar
  25. 25.
    OECD (1994) OECD guidelines for the testing of chemicals. Organization for EconomicGoogle Scholar
  26. 26.
    Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. In: Seminars in immunopathology, vol 5. Springer, p 601–612Google Scholar
  27. 27.
    Petruzzella V, Baggetto LG, Penin F, Cafagna F, Ruggiero FM, Cantatore P, Gadaleta MN (1992) In vivo effect of acetyl-L-carnitine on succinate oxidation, adenine nucleotide pool and lipid composition of synaptic and non-synaptic mitochondria from cerebral hemispheres of senescent rats. Arch Gerontol Geriatr 14(2):131–144.  https://doi.org/10.1016/0167-4943(92)90048-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Prakash C, Soni M, Kumar V (2016) Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: a review. J Appl Toxicol 36(2):179–188.  https://doi.org/10.1002/jat.3256 CrossRefPubMedGoogle Scholar
  29. 29.
    Ramroodi N, Khani M, Ganjali Z, Javan MR, Sanadgol N, Khalseh R, Ravan H, Sanadgol E, Abdollahi M (2015) Prophylactic effect of BIO-1211 small-molecule antagonist of VLA-4 in the EAE mouse model of multiple sclerosis. Immunol Investig 44(7):694–712.  https://doi.org/10.3109/08820139.2015.1085391 CrossRefGoogle Scholar
  30. 30.
    Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev 49(3):618–632.  https://doi.org/10.1016/j.brainresrev.2005.03.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Romano M, Vacante M, Cristaldi E, Colonna V, Gargante MP, Cammalleri L, Malaguarnera M (2008) L-Carnitine treatment reduces steatosis in patients with chronic hepatitis C treated with α-interferon and ribavirin. Dig Dis Sci 53(4):1114–1121.  https://doi.org/10.1007/s10620-007-9983-1 CrossRefPubMedGoogle Scholar
  32. 32.
    Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Abdollahi M, Sharifzadeh M, Ravan H (2016) Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of microgliosis and down-regulation of CCL2 and CCL3 pro-inflammatory chemokines. Cell Mol Biol (Noisy-le-Grand, France) 62:24Google Scholar
  33. 33.
    Santra A, Chowdhury A, Ghatak S, Biswas A, Dhali GK (2007) Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine. Toxicol Appl Pharmacol 220(2):146–155.  https://doi.org/10.1016/j.taap.2006.12.029 CrossRefPubMedGoogle Scholar
  34. 34.
    Sanz E, Munoz-Olivas R, Camara C, Sengupta MK, Ahamed S (2007) Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. J Environ Sci Health Part A 42(12):1695–1705.  https://doi.org/10.1080/10934520701564178 CrossRefGoogle Scholar
  35. 35.
    Sarvandi SS, Joghataei MT, Parivar K, Khosravi M, Sarveazad A, Sanadgol N (2015) In vitro differentiation of rat mesenchymal stem cells to hepatocyte lineage. Iran J Basic Med Sci 18(1):89–97PubMedPubMedCentralGoogle Scholar
  36. 36.
    Schnaitman C, Greenawalt JW (1968) Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol 38(1):158–175.  https://doi.org/10.1083/jcb.38.1.158 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sepand MR, Razavi-Azarkhiavi K, Omidi A, Zirak MR, Sabzevari S, Kazemi AR, Sabzevari O (2016) Effect of acetyl-L-carnitine on antioxidant status, lipid peroxidation, and oxidative damage of arsenic in rat. Biol Trace Elem Res 171(1):107–115.  https://doi.org/10.1007/s12011-015-0436-y CrossRefPubMedGoogle Scholar
  38. 38.
    Shadboorestan A, Shokrzadeh M, Ahangar N, Abdollahi M, Omidi M, Payam SSH (2015) The chemoprotective effects of L-carnitine against genotoxicity induced by diazinon in rat blood lymphocyte. Toxicol Ind Health 31(12):1334–1340.  https://doi.org/10.1177/0748233713491811 CrossRefPubMedGoogle Scholar
  39. 39.
    Shih R-H, Wang C-Y, Yang C-M (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77.  https://doi.org/10.3389/fnmol.2015.00077 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shoshan-Barmatz V, Golan M (2012) Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 19(5):714–735.  https://doi.org/10.2174/092986712798992110 CrossRefPubMedGoogle Scholar
  41. 41.
    Singh S, Mishra A, Srivastava N, Shukla R, Shukla S (2016) Acetyl-l-carnitine via upegulating dopamine D1 receptor and attenuating microglial activation prevents neuronal loss and improves memory functions in parkinsonian rats. Mol Neurobiol 1–20Google Scholar
  42. 42.
    Sinha M, Manna P, Sil PC (2008) Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain. J Biochem Mol Toxicol 22(1):15–26.  https://doi.org/10.1002/jbt.20209 CrossRefPubMedGoogle Scholar
  43. 43.
    Smeland OB, Meisingset TW, Borges K, Sonnewald U (2012) Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int 61(1):100–107.  https://doi.org/10.1016/j.neuint.2012.04.008 CrossRefPubMedGoogle Scholar
  44. 44.
    Song M-K, Seon H-J, Kim I-G, Han J-Y, Choi I-S, Lee S-G (2012) The effect of combined therapy of exercise and nootropic agent on cognitive function in focal cerebral infarction rat model. Ann Rehabil Med 36(3):303–310.  https://doi.org/10.5535/arm.2012.36.3.303 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LKS, Dwivedi HN, Pant AB, Khanna VK (2014) Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 279(3):428–440.  https://doi.org/10.1016/j.taap.2014.06.006 CrossRefPubMedGoogle Scholar
  46. 46.
    Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522.  https://doi.org/10.1016/0003-2697(69)90064-5 CrossRefPubMedGoogle Scholar
  47. 47.
    Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Global Health 80(4):303–314.  https://doi.org/10.1016/j.aogh.2014.09.005 CrossRefGoogle Scholar
  48. 48.
    Wu C-C, Bratton SB (2013) Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal 19(6):546–558.  https://doi.org/10.1089/ars.2012.4905 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, Khanna VK (2009) Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol 240(3):367–376.  https://doi.org/10.1016/j.taap.2009.07.017 CrossRefPubMedGoogle Scholar
  50. 50.
    Zeevalk G, Bernard L, Song C, Gluck M, Ehrhart J (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7(9-10):1117–1139.  https://doi.org/10.1089/ars.2005.7.1117 CrossRefPubMedGoogle Scholar
  51. 51.
    Zou X, Sadovova N, Patterson TA, Divine RL, Hotchkiss CE, Ali SF, Hanig JP, Paule MG, Slikker W Jr, Wang C (2008) The effects of L-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex. Neuroscience 151(4):1053–1065.  https://doi.org/10.1016/j.neuroscience.2007.12.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Hedieh Keshavarz-Bahaghighat
    • 1
    • 2
  • Mohammad Reza Sepand
    • 1
  • Mohammad Hossein Ghahremani
    • 1
  • Mehdi Aghsami
    • 1
  • Nima Sanadgol
    • 1
    • 3
    • 4
  • Ameneh Omidi
    • 5
  • Vida Bodaghi-Namileh
    • 1
  • Omid Sabzevari
    • 1
    • 2
  1. 1.Department of Toxicology and Pharmacology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  2. 2.Toxicology and Poisoning Research CentreTehran University of Medical SciencesTehranIran
  3. 3.Department of Biology, Faculty of SciencesUniversity of ZabolZabolIran
  4. 4.Young Researchers and Elite Club, Zahedan BranchIslamic Azad UniversityZahedanIran
  5. 5.Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations