Biological Trace Element Research

, Volume 184, Issue 2, pp 308–316 | Cite as

Comparative Hair Trace Element Profile in the Population of Sakhalin and Taiwan Pacific Islands

  • Anatoly V. Skalny
  • Margarita G. Skalnaya
  • Eugeny P. Serebryansky
  • Irina V. Zhegalova
  • Andrei R. Grabeklis
  • Oxana A. Skalnaya
  • Anastasia A. Skalnaya
  • Pai-Tsang Huang
  • Cheng-Chi Wu
  • Anatoly T. Bykov
  • Alexey A. TinkovEmail author


The objective of the current study is to perform a comparative analysis of hair trace element content in 393 apparently healthy adults living in Taipei, Taiwan, Republic of China (94 women and 46 men) and Yuzhno-Sakhalinsk, Sakhalin, Russia (186 women and 67 men). The obtained data indicate that Yuzhno-Sakhalinsk inhabitants were characterized by significantly higher hair Co, Cr, Mn, and V levels, exceeding the respective Taipei values by a factor of 3, 2, 7, and 5, respectively (all p < 0.001). Hair Cu, Fe, and Si levels were also higher in examinees from Yuzhno-Sakhalinsk than those from Taipei by 10% (p = 0.001), 61% (p < 0.001), and 68% (p < 0.001), respectively. It is notable that the only essential element, being significantly higher (+ 30%; p < 0.001) in Taipei inhabitants, is selenium. Yuzhno-Sakhalinsk inhabitants were characterized by 60% higher levels of hair Sn, and nearly two- and threefold higher scalp hair content of Be and Cd in comparison to Taipei values, respectively (all p < 0.001). Oppositely, the examinees from Taipei had 14% (p = 0.040) and 47% (p = 0.001) higher levels of hair As and Hg as compared to Yuzhno-Sakhalinsk inhabitants. Further analysis demonstrated that men from both Yuzhno-Sakhalinsk and Taipei were characterized by significantly higher hair Mn, As, and Pb levels in comparison to women. The intensive development of heavy industry in Yuzhno-Sakhalinsk may result in increased metal emissions, whereas fish consumption may result in elevation of hair Hg, As, and Se levels in Taiwan inhabitants.


Hair Trace elements Selenium Mercury Biomonitoring 



This paper was financially supported by the Ministry of Education and Science of the Russian Federation on the program to improve the competitiveness of Peoples’ Friendship University of Russia (RUDN University) among the world’s leading research and education centers in 2016–2020.

Compliance with Ethical Standards

The protocol of the study was approved by the Local Ethics Committee, and procedures were performed in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All examinees gave their informed consent prior to the inclusion in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182. CrossRefPubMedGoogle Scholar
  2. 2.
    Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242. CrossRefPubMedGoogle Scholar
  3. 3.
    Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12(1):63–84. CrossRefGoogle Scholar
  4. 4.
    Smolders R, Schramm KW, Stenius U, Grellier J, Kahn A, Trnovec T, Sram R, Schoeters G (2009) A review on the practical application of human biomonitoring in integrated environmental health impact assessment. J Toxicol Environ Health B 12(2):107–123. CrossRefGoogle Scholar
  5. 5.
    Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210(3-4):201–228. CrossRefPubMedGoogle Scholar
  6. 6.
    Esteban M, Castaño A (2009) Non-invasive matrices in human biomonitoring: a review. Environ Int 35(2):438–449. CrossRefPubMedGoogle Scholar
  7. 7.
    Chojnacka K, Zielińska A, Górecka H, Dobrzański Z, Górecki H (2010) Reference values for hair minerals of Polish students. Environ Toxicol Pharmacol 29(3):314–319. CrossRefPubMedGoogle Scholar
  8. 8.
    Bencko V (1995) Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology 101(1-2):29–39. CrossRefPubMedGoogle Scholar
  9. 9.
    Oyoo-Okoth E, Admiraal W, Osano O, Kraak MH (2012) Element profiles in hair and nails of children reflect the uptake from food and the environment. Environ Toxicol Chem 31(7):1461–1469. CrossRefPubMedGoogle Scholar
  10. 10.
    Varrica D, Tamburo E, Dongarrà G, Sposito F (2014) Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy). Sci Total Environ 470:117–126. CrossRefPubMedGoogle Scholar
  11. 11.
    Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, Grabeklis AR, Berezkina ES, Gryazeva IV, Skalny AA, Nikonorov AA (2015) Reference values of hair toxic trace elements content in occupationally non-exposed Russian population. Environ Toxicol Pharmacol 40(1):18–21. CrossRefPubMedGoogle Scholar
  12. 12.
    Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, Grabeklis AR, Berezkina ES, Gryazeva IV, Skalny AA, Skalnaya OA, Zhivaev NG, Nikonorov AA (2015) Hair concentration of essential trace elements in adult non-exposed Russian population. Environ Monit Assess 187(11):677. CrossRefPubMedGoogle Scholar
  13. 13.
    Cai Y (2011) Determination of select trace elements in hair of college students in Jinzhou, China. Biol Trace Elem Res 144(1-3):469–474. CrossRefPubMedGoogle Scholar
  14. 14.
    Pan Y, Li H (2015) Trace elements in scalp hair from potentially exposed individuals in the vicinity of the Bayan Obo mine in Baotou, China. Environ Toxicol Pharmacol 40(3):678–685. CrossRefPubMedGoogle Scholar
  15. 15.
    LeBlanc A, Dumas P, Lefebvre L (1999) Trace element content of commercial shampoos: impact on trace element levels in hair. Sci Total Environ 229(1-2):121–124. CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao L, Ren T, Zhong R (2012) Determination of lead in human hair by high resolution continuum source graphite furnace atomic absorption spectrometry with microwave digestion and solid sampling. Anal Lett 45(16):2467–2481. CrossRefGoogle Scholar
  17. 17.
    Skalnaya MG, Tinkov AA, Demidov VA, Serebryansky EP, Nikonorov AA, Skalny AV (2015) Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia. Ann Hum Biol 43(5):1–7. CrossRefGoogle Scholar
  18. 18.
    Sioen I, Matthys C, De Backer G, Van Camp J, Henauw SD (2007) Importance of seafood as nutrient source in the diet of Belgian adolescents. J Hum Nutr Diet 20(6):580–589. CrossRefPubMedGoogle Scholar
  19. 19.
    Chan HM, Egeland GM (2004) Fish consumption, mercury exposure, and heart diseases. Nutr Rev 62(2):68–72CrossRefPubMedGoogle Scholar
  20. 20.
    Xiang Ying C, Cai HE (2009) Determination of tin in seafood by microwave dissolution and hydride generation-atomic fluorescence spectroscopy. China Trop Med 9(1):153–154Google Scholar
  21. 21.
    Qing JF, Lee ZX, Liang DD (2003) Microelement analysis and disease diagnosis in hairs. Zhengzhou University Express, 216–217 [in Chinese]Google Scholar
  22. 22.
    Yen SM, Wu JB, Xu DY (1992) Introduction to microelements. Tongji University Express p., 82–83 [in Chinese]Google Scholar
  23. 23.
    Borak J, Hosgood HD (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47(2):204–212. CrossRefPubMedGoogle Scholar
  24. 24.
    Plessi M, Bertelli D, Monzani A (2001) Mercury and selenium content in selected seafood. J Food Compost Anal 14(5):461–467. CrossRefGoogle Scholar
  25. 25.
    Streets DG, Waldhoff ST (2000) Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmos Environ 34(3):363–374. CrossRefGoogle Scholar
  26. 26.
    Wilson E (2006) New frontiers for the oil and gas industry: company-community relations on Sakhalin Island. Camb Anthropol 26:13–33Google Scholar
  27. 27.
    Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298. CrossRefGoogle Scholar
  28. 28.
    Lee RE Jr, Von Lehmden DJ (1973) Trace metal pollution in the environment. J Air Pollut Control Assoc 23(10):853–857. CrossRefPubMedGoogle Scholar
  29. 29.
    Reddy MS, Basha S, Joshi HV, Jha B (2005) Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. J Hazard Mater 123(1-3):242–249. CrossRefPubMedGoogle Scholar
  30. 30.
    Kazakova EN, Lobkina VA, Zarubina NV, Elovskiy EV (2012) Dependence of the content and distribution of metals in snow cover on natural and anthropogenic factors (south Sakhalin, Sea of Okhotsk). Ann Glaciol 53(61):45–50. CrossRefGoogle Scholar
  31. 31.
    Industrial Development Bureau, Ministry of Economic Affairs. 2014 Industrial Development in Taiwan, R.O.C. Accessed 8 March 2017
  32. 32.
    Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T, Kawashima K, Akimoto H (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in Asia (REAS) version 2. Atmos Chem Phys 13(21):11019–11058. CrossRefGoogle Scholar
  33. 33.
    Total fish consumption per capita (kg) and fish contribution to total animal proteins. Accessed 8 March 2017
  34. 34.
    Schaefer AM, Jensen EL, Bossart GD, Reif JS (2014) Hair mercury concentrations and fish consumption patterns in Florida residents. Int J Environ Res Public Health 11(7):6709–6726. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fang T, Aronson KJ, Campbell LM (2012) Freshwater fish–consumption relations with total hair mercury and selenium among women in Eastern China. Arch Environ Contam Toxicol 62(2):323–332. CrossRefPubMedGoogle Scholar
  36. 36.
    Fu X, Feng X, Sommar J, Wang S (2012) A review of studies on atmospheric mercury in China. Sci Total Environ 421:73–81. CrossRefPubMedGoogle Scholar
  37. 37.
    Guo H, Wen D, Liu Z, Jia Y, Guo Q (2014) A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl Geochem 41:196–217. CrossRefGoogle Scholar
  38. 38.
    Park D, Yang H, Jeong J, Ha K, Choi S, Kim C, Yoon C, Park D, Paek D (2010) A comprehensive review of arsenic levels in the semiconductor manufacturing industry. Ann Occup Hyg 54(8):869–879. PubMedCrossRefGoogle Scholar
  39. 39.
    Xu ZY (2011) How much heavy metals are there in the soil. Scientific Dev 468:56 [in Chinese]Google Scholar
  40. 40.
    Tamburo E, Varrica D, Dongarrà G (2016) Gender as a key factor in trace metal and metalloid content of human scalp hair. A multi-site study. Sci Total Environ 573:996–1002CrossRefGoogle Scholar
  41. 41.
    Fort M, Grimalt JO, Casas M, Sunyer J (2015) Interdependence between urinary cobalt concentrations and hemoglobin levels in pregnant women. Environ Res 136:148–154. CrossRefPubMedGoogle Scholar
  42. 42.
    Berglund M, Lindberg AL, Rahman M, Yunus M, Grandér M, Lönnerdal B, Vahter M (2011) Gender and age differences in mixed metal exposure and urinary excretion. Environ Res 111(8):1271–1279. CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang LL, Lu L, Pan YJ, Ding CG, Xu DY, Huang CF, Pan XF, Zheng W (2015) Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb. Environ Res 140:10–17. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Díaz C, López F, Henríquez P, Rodríguez E, Serra-Majem L (2001) Serum manganese concentrations in a representative sample of the Canarian population. Biol Trace Elem Res 80(1):43–51. CrossRefPubMedGoogle Scholar
  45. 45.
    He M, Lu H, Luo C, Ren T (2016) Determining trace metal elements in the tooth enamel from Hui and Han Ethnic groups in China using microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS). Microchem J 127:142–144. CrossRefGoogle Scholar
  46. 46.
    Lindberg AL, Ekström EC, Nermell B, Rahman M, Lönnerdal B, Persson LÅ, Vahter M (2008) Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res 106(1):110–120. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Anatoly V. Skalny
    • 1
    • 2
    • 3
    • 4
  • Margarita G. Skalnaya
    • 1
    • 2
  • Eugeny P. Serebryansky
    • 2
  • Irina V. Zhegalova
    • 1
    • 5
  • Andrei R. Grabeklis
    • 1
    • 2
    • 3
  • Oxana A. Skalnaya
    • 2
    • 6
  • Anastasia A. Skalnaya
    • 7
  • Pai-Tsang Huang
    • 8
  • Cheng-Chi Wu
    • 9
  • Anatoly T. Bykov
    • 10
  • Alexey A. Tinkov
    • 1
    • 2
    • 3
    Email author
  1. 1.Peoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation
  2. 2.ANO “Centre for Biotic Medicine”MoscowRussia
  3. 3.Yaroslavl State UniversityYaroslavlRussia
  4. 4.Orenburg State UniversityOrenburgRussia
  5. 5.I.M. Sechenov First Moscow State Medical UniversityMoscowRussia
  6. 6.National Taiwan UniversityTaipeiRepublic of China
  7. 7.Lomonosov Moscow State UniversityMoscowRussia
  8. 8.Wan Fang HospitalTaipei Medical UniversityTaipeiRepublic of China
  9. 9.Neo-Med clinicNew TaipeiRepublic Of China
  10. 10.Kuban State Medical UniversityKrasnodarRussia

Personalised recommendations