Advertisement

Biological Trace Element Research

, Volume 184, Issue 1, pp 83–91 | Cite as

Protective Role of Selenium in Immune-Relevant Cytokine and Immunoglobulin Production by Piglet Splenic Lymphocytes Exposed to Deoxynivalenol

  • Xuemei Wang
  • Zhicai Zuo
  • Junliang Deng
  • Zhuo Zhang
  • Changhao Chen
  • Yu Fan
  • Guangneng Peng
  • Suizhong Cao
  • Yanchun Hu
  • Shumin Yu
  • Chaoxi Chen
  • Zhihua Ren
Article
  • 174 Downloads

Abstract

Deoxynivalenol (DON) is a mycotoxin that causes immunosuppression, especially in swine. Selenium (Se) is essential for proper functioning of the immune system in animals. However, little is known about the effects of DON and Se on cytokine or immunoglobulin production in piglets. Here, we addressed this gap by examining piglet splenic lymphocyte responses in vitro. Cells were stimulated with concanavalin A, a T cell stimulatory lectin, in the absence or presence of DON (0.1, 0.2, 0.4, and 0.8 μg/mL), Se (Na2SeO3, 2 μM), or combinations of Se 2 μM and DON 0.1–0.8 μg/mL for 12, 24, or 48 h. At each time point, supernatants and cells were collected and the expression of cytokine and immunoglobulin protein and mRNA was examined. Compared with control and Se-alone treatments, DON exposure significantly and dose dependently decreased the expression levels of IL-2, IL-4, IL-6, IL-10, IFN-γ, IgG, and IgM mRNA and protein. By contrast, co-treatment with DON + Se significantly increased the mRNA and protein levels of all factors examined, except IL-4 and IL-6, compared with DON treatment alone. The results of this investigation demonstrate that Se has the potential to counteract DON-induced immunosuppression in piglets and is a promising treatment for DON-mediated toxicity.

Keywords

Deoxynivalenol Selenium Cytokine Immunoglobulin Splenic lymphocyte 

Abbreviations

DON

Deoxynivalenol

Se

Selenium

IL-2

Interleukin-2

IFN-γ

Interferon gamma

IgM

Immunoglobulin M

ELISA

Enzyme-linked immuneabsorbent assays

ConA

Concanavalin A

Notes

Acknowledgments

We thank Anne M. O’Rourke, PhD, from Liwen Bianji, Edanz Group China (www. Liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

The present work was supported by the National Natural Science Fund of China (31402269) and the Changjiang Scholars and Innovative Research Team of Ministry of Education of China Funds (grant no. IRTO848).

Compliance with Ethical Standards

The authors confirm that this manuscript has not been published elsewhere and is not under consideration by another journal. All authors have approved the manuscript and agree with submission to FEBS Letters.

Conflict of Interest

The authors declare that they no conflict of interest.

References

  1. 1.
    Ren, Z., Deng, H., Deng, Y. et al (2017) Combined effects of deoxynivalenol and zearalenone on oxidative injury and apoptosis in porcine splenic lymphocytes in vitro. Exp Toxicol PatholGoogle Scholar
  2. 2.
    Desjardins AE (2007) Fusarium mycotoxins: chemistry, genetics, and biology. Plant Pathol 56(2):337–337Google Scholar
  3. 3.
    Rotter BA (1996) Invited review: toxicology of deoxynivalenol(vomitoxin). J Toxicol Environ Health 48(1):1–34CrossRefPubMedGoogle Scholar
  4. 4.
    Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health Part B Crit Rev 8(1):39–69CrossRefGoogle Scholar
  5. 5.
    Liang Z, Ren Z, Gao S et al (2015) Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ Toxicol Pharmacol 40(3):686CrossRefPubMedGoogle Scholar
  6. 6.
    Ren ZH, Deng HD, Deng YT et al (2016) Effect of the Fusarium toxins, zearalenone and deoxynivalenol on the mouse brain. Environ Toxicol Pharmacol:46–62Google Scholar
  7. 7.
    Ren Z, Wang Y, Deng H et al (2016) Effects of deoxynivalenol on calcium homeostasis of concanavalin A—stimulated splenic lymphocytes of chickens in vitro. Exp Toxicol Pathol 68(4):241–245CrossRefPubMedGoogle Scholar
  8. 8.
    Mikami, O. (2011) Study on the effects of acute exposure to deoxynivalenol on the liver and immune system of pigs. Jap J Vet ResGoogle Scholar
  9. 9.
    Zielonka L, Gajecki M, Obremski K et al (2003) Influence of low doses of deoxynivalenol applied per os on chosen indexes of immune response in swine. Pol J Vet Sci 6(3 suppl):74–77PubMedGoogle Scholar
  10. 10.
    Goyarts T, Dänicke S, Tiemann U et al (2006) Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol in Vitro 20(6):858–867CrossRefPubMedGoogle Scholar
  11. 11.
    Marin, D. E., Taranu, I., Manda, G. et al (2006) In vitro effect of deoxynivalenol on porcine lymphocyte immune functions. Archiva ZootechnicaGoogle Scholar
  12. 12.
    Xue CY, Wang GH, Chen F et al (2010) Immunopathological effects of ochratoxin A and T-2 toxin combination on broilers. Poult Sci 89(6):1162–1166CrossRefPubMedGoogle Scholar
  13. 13.
    Odhav B, Adam JK, Bhoola KD (2008) Modulating effects of fumonisin B1 and ochratoxin A on leukocytes and messenger cytokines of the human immune system. Int Immunopharmacol 8(6):799–809CrossRefPubMedGoogle Scholar
  14. 14.
    Ouyang YL, Azcona-Olivera JI, Pestka JJ (1995) Effects of trichothecene structure on cytokine secretion and gene expression in murine CD4 + T-cells. Toxicology 104(1–3):187–202CrossRefPubMedGoogle Scholar
  15. 15.
    Warner RL, Brooks K, Pestka JJ (1994) In vitro effects of vomitoxin (deoxynivalenol) on T-cell interleukin production and IgA secretion. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 32(7):617–625CrossRefGoogle Scholar
  16. 16.
    Azcona-Olivera JI, Ouyang YL, Warner RL et al (1995) Effects of vomitoxin (deoxynivalenol) and cycloheximide on IL-2, 4, 5 and 6 secretion and mRNA levels in murine CD4 + cells. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 33(6):433–441CrossRefGoogle Scholar
  17. 17.
    Reinhold U, Pawelec G, Enczmann J, Wernet P (1989) Class-specific effects of selenium on PWM-driven human antibody synthesis in vitro. Biol Trace Elem Res 20(1):45–58CrossRefPubMedGoogle Scholar
  18. 18.
    Petrie HT, Klassen LW, Klassen PS et al (1989) Selenium and the immune response: 2. Enhancement of murine cytotoxic T-lymphocyte and natural killer cell cytotoxicity in vivo. J Leukoc Biol 45(3):215–220CrossRefPubMedGoogle Scholar
  19. 19.
    Wang RD, Wang CS, Feng ZH et al (1992) Investigation on the effect of selenium on T lymphocyte proliferation and its mechanisms. J Tongji Med Univ 12(1):33–38CrossRefPubMedGoogle Scholar
  20. 20.
    Xu D, Li W, Huang Y et al (2014) The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress. Biol Trace Elem Res 160(2):232CrossRefPubMedGoogle Scholar
  21. 21.
    Wen ZS, Xu YL, Zou XT et al (2011) Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Marine Drugs 9(6):1038–1055CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qin S, Huang B, Ma J, Wang X et al (2015) Effects of selenium-chitosan on blood selenium concentration, antioxidation status, and cellular and humoral immunity in mice. Biol Trace Elem Res 165(2):145–152CrossRefPubMedGoogle Scholar
  23. 23.
    Wang Y, Li J, Li Y et al (2016) Effect of different selenium supplementation levels on oxidative stress, cytokines, and immunotoxicity in chicken thymus. Biol Trace Elem Res 2:1–8Google Scholar
  24. 24.
    Hayek MG Jr, Harmon RJ et al (1989) Porcine immunoglobulin transfer after prepartum treatment with selenium or vitamin E. J Anim Sci 67(5):1299–1306CrossRefPubMedGoogle Scholar
  25. 25.
    Khan MZ, Akter SH, Islam MN et al (2008) The effect of selenium and vitamin E on the lymphocytes and immunoglobulin-containing plasma cells in the lymphoid organ and mucosa-associated lymphatic tissues of broiler chickens. Anantomia Histologia Embryologia 37(1):52–59Google Scholar
  26. 26.
    Salimian J, Arefpour MA, Riazipour M et al (2014) Immunomodulatory effects of selenium and vitamin E on alterations in T lymphocyte subsets induced by T-2 toxin. Immunopharmacol Immunotoxicol 36(4):1–7CrossRefGoogle Scholar
  27. 27.
    Ahmadi A, Poursasan N, Amani J et al (2015) Adverse effect of T-2 toxin and the protective role of selenium and vitamin E on peripheral blood B lymphocytes. Iran J Immunol Iji 12(1):64–69PubMedGoogle Scholar
  28. 28.
    Chen K, Yuan S, Chen J et al (2013) Effects of sodium selenite on the decreased percentage of T cell subsets, contents of serum IL-2 and IFN-γ induced by aflatoxin B 1 in broilers. Res Vet Sci 95(1):143–145CrossRefPubMedGoogle Scholar
  29. 29.
    He Y, Fang J, Peng X et al (2014) Effects of sodium selenite on aflatoxin B1-induced decrease of ileac T cell and the mRNA contents of IL-2, IL-6, and TNF-α in broilers. Biol Trace Elem Res 159(1–3):167–173CrossRefPubMedGoogle Scholar
  30. 30.
    Mubarak A, Rashid A, Khan IA et al (2009) Effect of vitamin E and selenium as immunomodulators on induced aflatoxicosis in broiler birds. Pak J Life Soc Sci 7:31–34Google Scholar
  31. 31.
    Ganter, M. (1995) Ketamine anesthesia in pig. Scand J Lab Anim SciGoogle Scholar
  32. 32.
    Zhuang T, Xu H, Hao S et al (2015) Effects of selenium on proliferation, interleukin-2 production and selenoprotein mRNA expression of normal and dexamethasone-treated porcine splenocyte. Res Vet Sci 98:59–65CrossRefPubMedGoogle Scholar
  33. 33.
    Wang X, Zuo Z, Zhao C et al (2016) Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol. Environ Toxicol Pharmacol 47:53–61CrossRefPubMedGoogle Scholar
  34. 34.
    Ren F, Chen X, Hesketh J et al (2012) Selenium promotes T-cell response to TCR-stimulation and ConA, but not PHA in primary porcine splenocytes. PLoS One 7(4):e35375CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Du X, Zhen S, Peng Z et al (2017) Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows. Journal of Cellular PhysiologyGoogle Scholar
  36. 36.
    Sun X, Yuan X, Chen L et al (2017) Histamine induces bovine rumen epithelial cell inflammatory response via NF-kappaB pathway. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry and Pharmacology 42(3):1109–1119CrossRefGoogle Scholar
  37. 37.
    Pestka JJ (2008) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Breed Feed 137(3):283–298Google Scholar
  38. 38.
    Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment 25(9):1128–1140CrossRefGoogle Scholar
  39. 39.
    Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health Part B Crit Rev 8(1):39CrossRefGoogle Scholar
  40. 40.
    Zhou HR, Lau AS, Pestka JJ (2003) Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci 74(2):335CrossRefPubMedGoogle Scholar
  41. 41.
    Awad WA, Ghareeb K, Böhm J, Zentek J (2010) Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment 27(4):510CrossRefGoogle Scholar
  42. 42.
    Yan G (2006) Detoxification of aflatoxins by the biological methods. China FeedGoogle Scholar
  43. 43.
    Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383(6603):787–793CrossRefPubMedGoogle Scholar
  44. 44.
    Meky FA, Hardie LJ, Evans SW et al (2001) Deoxynivalenol-induced immunomodulation of human lymphocyte proliferation and cytokine production. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 39(9):827–836CrossRefGoogle Scholar
  45. 45.
    Xu F, Shuang L, Shu L (2015) Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biol Trace Elem Res 165(2):214–221CrossRefPubMedGoogle Scholar
  46. 46.
    Bonham M, O’Connor JM, Hannigan BM et al (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87(5):393CrossRefPubMedGoogle Scholar
  47. 47.
    Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4(9):665CrossRefPubMedGoogle Scholar
  48. 48.
    Gajewski TF, Fitch FW (1988) Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol 140(12):4245–4252PubMedGoogle Scholar
  49. 49.
    Szabo SJ, Jacobson NG et al (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2(6):665CrossRefPubMedGoogle Scholar
  50. 50.
    Goodbourn S, Didcock L, Randall RE, Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81(10):2341–2364CrossRefPubMedGoogle Scholar
  51. 51.
    Azconaolivera JI, Ouyang Y, Murtha J et al (1995) Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): relationship to toxin distribution and protein synthesis inhibition. Toxicol Appl Pharmacol 133(1):109–120CrossRefGoogle Scholar
  52. 52.
    Zhou HR, Yan D, Pestka JJ (1997) Differential cytokine mRNA expression in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): dose response and time course. Toxicol Appl Pharmacol 144(2):294–305CrossRefPubMedGoogle Scholar
  53. 53.
    Van LTB, Lemay M, Bastien A et al (2016) The potential effects of antioxidant feed additives in mitigating the adverse effects of corn naturally contaminated with Fusarium mycotoxins on antioxidant systems in the intestinal mucosa, plasma, and liver in weaned pigs. Mycotoxin Res 32(2):1–18Google Scholar
  54. 54.
    Cohen MC, Cohen S (1996) Cytokine function: a study in biologic diversity. Am J Clin Pathol 105(5):589CrossRefPubMedGoogle Scholar
  55. 55.
    Ouyang YL, Azcona-Olivera JI, Pestka JJ (1995) Effects of trichothecene structure on cytokine secretion and gene expression in murine CD4 + T-cells. Toxicology 104(1–3):187CrossRefPubMedGoogle Scholar
  56. 56.
    Dong WM, Azconaolivera JI, Brooks KH et al (1994) Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin (deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol Appl Pharmacol 127(2):282–290CrossRefPubMedGoogle Scholar
  57. 57.
    Wong SS, Schwartz RC, Pestka JJ (2001) Superinduction of TNF-α and IL-6 in macrophages by vomitoxin (deoxynivalenol) modulated by mRNA stabilization. Toxicology 161(1–2):139–149CrossRefPubMedGoogle Scholar
  58. 58.
    Ren Z, Wang Y, Deng H et al (2015) Deoxynivalenol-induced cytokines and related genes in concanavalin A-stimulated primary chicken splenic lymphocytes. Toxicol In Vitro: Int J Publ Assoc BIBRA 29(3):558–563CrossRefGoogle Scholar
  59. 59.
    Chen K, Shu G, Peng X et al (2013) Protective role of sodium selenite on histopathological lesions, decreased T-cell subsets and increased apoptosis of thymus in broilers intoxicated with aflatoxin B 1. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 59(3):446–454Google Scholar
  60. 60.
    Yu Z, Wang F, Liang N et al (2015) Effect of selenium supplementation on apoptosis and cell cycle blockage of renal cells in broilers fed a diet containing aflatoxin B 1. Biol Trace Elem Res 168(1):242–251CrossRefPubMedGoogle Scholar
  61. 61.
    Song Y, Li N, Gu J et al (2016) β-Hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway. J Dairy Sci 99(11):9184CrossRefPubMedGoogle Scholar
  62. 62.
    Ren Z, Wang Y, Deng H et al (2015) Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ Toxicol Pharmacol 39(1):339CrossRefPubMedGoogle Scholar
  63. 63.
    Mishra S, Dwivedi PD, Pandey HP et al (2014) Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 72(3):20–29CrossRefGoogle Scholar
  64. 64.
    Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57(3–4):134–144CrossRefPubMedGoogle Scholar
  65. 65.
    Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153(1–3):83–104CrossRefPubMedGoogle Scholar
  66. 66.
    Maquat LE (2001) Evidence that selenium deficiency results in the cytoplasmic decay of GPx1 mRNA dependent on pre-mRNA splicing proteins bound to the mRNA exon-exon junction. Biofactors 14(1–4):37–42CrossRefPubMedGoogle Scholar
  67. 67.
    Vitetta ES, Brooks K, Chen YW et al (1984) T cell-derived lymphokines that induce IgM and IgG secretion in activated murine B cells. Immunol Rev 78(1):137CrossRefPubMedGoogle Scholar
  68. 68.
    Bryant A, Calver NC, Toubi E et al (1990) Classification of patients with common variable immunodeficiency by B cell secretion of IgM and IgG in response to anti-IgM and interleukin-2. Clin Immunol Immunopathol 56(2):239CrossRefPubMedGoogle Scholar
  69. 69.
    Warner RL, Brooks K, Pestka JJ (1994) In vitro effects of vomitoxin (deoxynivalenol) on T-cell interleukin production and IgA secretion. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 32(7):617CrossRefGoogle Scholar
  70. 70.
    Ren ZH, Zhou R, Deng JL et al (2014) Effects of the Fusarium toxin zearalenone (ZEA) and/or deoxynivalenol (DON) on the serum IgA, IgG and IgM levels in mice. Food Agric Immunol 25(4):600–606CrossRefGoogle Scholar
  71. 71.
    Mckenzie RC, Rafferty TS, Beckett GJ (1998) Selenium: an essential element for immune function. Immunol Today 19(8):342–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xuemei Wang
    • 1
  • Zhicai Zuo
    • 1
  • Junliang Deng
    • 1
  • Zhuo Zhang
    • 1
  • Changhao Chen
    • 1
  • Yu Fan
    • 1
  • Guangneng Peng
    • 1
  • Suizhong Cao
    • 1
  • Yanchun Hu
    • 1
  • Shumin Yu
    • 1
  • Chaoxi Chen
    • 2
  • Zhihua Ren
    • 1
  1. 1.College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
  2. 2.College of Life Science and TechnologySouthwest University for NationalitiesChengduChina

Personalised recommendations